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Abstract—This paper presents the basis of defining data-

driven, machine learning assisted optimization models for 

automating the adjustment of physical parameters in EM software 

simulations controlled by AntennaCAT. Data from over 60,000 

simulations have been collected for a rectangular patch antenna 

case study and used to design boundaries for rule-based models, 

and for increasing the reliability of machine learning based 

optimization models fed with unbalanced classes, or with sparse 

data. The data collection methodology, some early empirical 

results, and implications for automated tuning and design are 

discussed. 
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I. INTRODUCTION 

Machine Learning Assisted Optimization (MLAO) combines 
the ability to learn non-obvious and non-analytic solutions to a 
given problem with the stability of a mathematical model or 
otherwise bounded system. This approach reduces the number 
of potential invalid states and has an impact beyond training 
more effective machine learning (ML) models capable of 
evolutionary optimization. Rather than training classification-
focused models on static networks, MLAO utilizes 
hyperparameter tuning and intelligent search algorithms to 
handle a broader range of input variation and adaptation. For 
antenna design, this means focusing on training models to 
recognize the impact of interactions between physical 
parameter changes rather than only correct feature 
classification. This paper treats MLAO, and any algorithms 
spawning from it, as a singular component to the optimization 
approach used by AntennaCAT (Antenna Calculating and 
Autotuning Tool) [1-3] for automating the tuning of physical 
features in parameterized designs. AntennaCAT takes a 
modular approach to antenna design optimization by applying 
different optimizers based on the number of controllable 
parameters in a simulated design, and thus the estimated 
maximum size of the state space. Designs with few controllable 
parameters utilize rule-based systems with user-set design 
limitations, such as a maximum deviation from the numerical 
solution in the rectangular patch design used in this case study, 
rather than complex ML models. When using a topology known 
to the solver, boundaries and system behavior based on patterns 
from empirical data are used to decrease the time to an 
optimized solution. For designs with many controllable 
parameters and known topologies, ML models trained on the 
collected data are implemented. In cases where designs with 
many parameters and an unknown topology are being 
optimized, several simulation iterations are run to collect an 
initial data sample, and then either a rule-based approach or ML 

method is used depending on results and proximity to an 
acceptable solution. 

II. DATA COLLECTION AND EVALUATION 

AntennaCAT is built on Python 3.9, and uses common libraries 
for data collection, processing, and machine learning [3]. A 
major feature of AntennaCAT is its Batch data collection 
process, which has been used here to create a collection of more 
than 60,000 simulation results organized into 15 datasets by 
frequency and feed type. Each dataset contains the raw output 
for parameter values, gain, directivity, and reflection for the 
individual steps in a simulation sweep. Summarized, extracted 
values for multiple resonance information, first null beamwidth 
(FNBW), half power beamwidth (HPBW), efficiency, and 
other characteristics for each simulation step are provided in 
addition. The summarized data for each set is preformatted for 
ML, and contains some pre-evaluated metrics used in 
AntennaCAT for deciding the empirical boundaries in the rule-
based optimization models, and for verifying ML optimizer 
outputs as valid simulation decisions. These boundaries include 
metrics for filtering for valid designs, but also using known 
patterns, such as the gain data patterns shown in Fig. 1 to 
classify probable frequency.  

 

Figure 1. Linearly Separable Gain Data Patterns for a Classification Filter 
for 5 Frequencies of 2 Designs.  

A. Parameter Variation 

The database is split into sets based on frequency and feed type. 

In this case study, both microstrip and probe fed rectangular 

patch antennas were simulated. The probe fed patch varied 

length and width of the patch, feed location, and substrate 

thickness, while the microstrip fed patch varied those 

parameters and the strip length, thickness, and the gap distance 

between the microstrip and the patch. Initial values for each 

377978-1-946815-19-4 2024 USNC-URSI NRSM



parameter were found using AntennaCAT’s internal calculator, 

and then a maximum and minimum deviation range of at least 

± 15% was used for initial data collection. For completeness of 

the set, ranges were expanded or contracted depending on 

impact on simulation results. That is, if valid designs were 

occurring at the edge of the ± 15% for some variable 

configurations, the range was expanded.  

B. Simulation and Data Collection 

AntennaCAT’s batch data collection is based on the closed-

loop control system that automates the CAD design and 

creation, simulation setup, analysis, and report export of a 

compatible EM simulation software (currently, HFSS, Feko, 

CST, COMSOL, and EMPIRE XPU). All datasets were 

collected using this process with Ansys HFSS 2021 and 2022. 

Rectangular patch antennas have been simulated for 100 MHz, 

500 MHz, 900 MHz, 1500 MHz, 2400 MHz, 5800 MHz, 6000 

MHz, 8160 MHz, and 12000 MHz. External processing 

converted raw data into the summarized and ML sets for 

investigation. Other frequencies of interest will be simulated as 

initial processing progresses. 

C. Evaluation and Interpretation 

The evaluation of the data collection as a dataset and evaluation 

for valid antenna design have been treated as separate metrics. 

Valid datasets are those that produce a mix of valid and invalid 

antenna designs while generating designs that are physically 

possible to create. The 100 MHz, 500 MHz, and 900 MHz 

designs are physically possible, but not the most effective 

design choice for those frequencies. Configurations that create 

potentially valid antenna designs are filtered by a minimum 

gain of 3dB, efficiency at or above 40%, and simulated S11 of -

10dB or lower. Combining these metrics, with physical 

relations between parameters yield trends such as those in Fig. 

2, where the best simulated S11 values occurred with 

width/length ratios between 1.2 and 1.6. When filtering for 

more effective designs, increasing the efficiency or gain 

minimums retains the same spread, but with less dramatic 

visualization. 

III. EMPIRICAL BOUNDARIES, RULE-BASED MODELS, AND 

MLAO COMBINATIONS 

For analytical or semi-analytical models, there are relatively 
known, and bounded state space for design parameters in the 
system. Within this state space are parameter combinations that 
perform well, and others that produce invalid solutions. 
Empirical boundaries from numerical solutions to analytical or 
semi-analytical designs complement these models, and are the 
basis for rule-based systems. Rule-based systems merge the 
modeled relation with information about behavior for 
optimization. This information can be human provided, or 
collected from contextualized data, but has an exponential 
increase in complexity for systems with many controllable 
parameters. However, for systems with few parameters, using a 
rule-based optimizer instead of machine learning may reduce 
computation time.  

 

Figure 2. The Characteristic ‘V’ Shape of Width/Length Ratio Variation 
on S11 at Collective Target Resonance Frequencies. 

Complex semi-analytical, or non-analytical models cannot be 
characterized with rule-based models, but in many cases can be 
represented with ML models. However, pure ML techniques in 
this context will suffer from sparse data and classification 
issues. Additionally, if optimization systems are not carefully 
executed, it is possible to implement parameter variation 
commands that are not physically possible within a system, 
increasing time for optimization through unnecessary 
simulations. However, MLAO combines the adaptability of ML 
and the stability of rule-based approaches. In AntennaCAT, this 
is accomplished by extracting trends from the same datasets 
that the ML models are trained on to create empirical 
boundaries in the system. These boundaries are used to estimate 
initial conditions for prediction, potential next valid states, and 
automated simulation adjustments, while the ML network is 
used to decide the next design parameter adjustments.  

IV. RESULTS 

Early analysis of the 60,000 simulations in the database 
suggests several observable relations between physical 
parameters are a predictor for potentially valid antenna designs. 
These empirical relations can be implemented in rule-based 
optimizers, as input for ML models, and in MLAO methods for 
reducing the number of simulations needed for optimizing 
antenna designs for known topologies. A comparison of 
implemented rule-based, ML, and MLAO tuning method 
results, and empirical trends, will be presented.  
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