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Abstract—We build, analyze, and compare six machine 

learning algorithms for direction-finding on dynamic systems. 
Each model is optimized to decrease its computational complexity 
to make quicker angle-of-arrival estimates and maintain accuracy. 
The extracted angle determination compares favorably in terms of 
accuracy and speed to the MUSIC algorithm, with some models 
exceeding its performance.  
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I. INTRODUCTION 

Machine learning (ML) has the potential to reduce time of 
design and in this particular case, to increase angle of arrival 
accuracy. Direction finding (DF) applications are well suited for 
ML, and numerous algorithms have been tested and proven 
effective[1]–[3]. This is because ML can perform complex 
calculations quicker, especially for real-time, dynamic systems. 
Notably, DF systems with fast-moving targets must limit the 
number of snapshots. This snapshot limit can exclude the use of 
specific conventional techniques where time is critical.   

In previous research, individual ML methods have been 
investigated and compared to conventional beamforming and 
subspace techniques. However, most research is limited to a 
single model, with a few considering two or three [4]. Fewer 
studies take the application beyond the azimuthal plane. This 
work compares six ML algorithms and determines which 
produces the quickest, most-accurate results for dynamic 2-D 
DF. Even though ML reduces the computational complexity as 
compared to conventional methods, it can still have significant 
overhead. For this reason, this work also optimizes models to 
perform at high speeds for dynamic DF.   

II. BUILDING THE ML MODELS FOR DF  

Machine Learning can be split into regression and 
classification models. A regression model maps the input to a 
continuous range of output values, whereas classification 
models work with discrete spacing, called classes. All of our 
models were built using classification algorithms. Classification 
algorithms were selected because they are generally faster. Fast 
computation is often most critical with moving targets, and a 
coarser angular determination is, typically, an acceptable 
tradeoff. 

A. Input Selection 

DF techniques for array systems can be grouped into 
beamforming and subspace methods. Both methods use the 
autocorrelation (AC) matrix as input. The AC matrix is an 
element-by-element correlation, and as the array size increases, 

the size of the matrix grows exponentially. Additionally, each 
matrix value is complex with a real and imaginary component. 
For example, a 4x4 element array has a 16x16 AC matrix with a 
total of 256 complex values. Furthermore, as shown in (1), the 
matrix is symmetric and Toeplitz. Consequently, when used as 
an ML input, over half the values are redundant [5]. Taking 
advantage of redundancy can reduce the 512 entries down to 240. 
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B. Output Selection 

For DF classification, the resolution of the algorithm is 
directly tied to the number of classes [6]. Of course, the more 
classes used to cover a region, the finer the resolution. For 
example, a 10° spacing in azimuth and elevation over a 
hemisphere would require 324 sectors or classes. The type of 
antenna, array configuration, and system application can reduce 
the needed number of classes. For our application a uniform 
rectangular array is used that is assumed to rotate its beam. With 
an angular rotation of π rad/s, we opted for a tighter resolution 
versus full azimuthal coverage. Instead, ten azimuthal classes 
were used over the half-power beamwidth and nine elevation 
classes over the 90° to 120° range. This sectorization of space 
gave an azimuthal resolution of 2.5° and an elevation resolution 
of 6.7°. The sectors for the 90 classes can be seen in Figure 1. 

Figure 1. Output sectors for 10 classes over the array’s half-power 
beamwidth and nine classes over 90° to 120° in elevation. The pattern is 

rotated around the z-axis providing full 360° coverage.  
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C. Models and Training Data Creation 

Six ML algorithms were considered: (1) k-nearest neighbors 
(KNN), (2) tree, (3) discriminant analysis, (4) support-vector 
machine (SVM), (5) random forest, and (6) ensemble KNN. 
These six algorithms were chosen to compare distance-, 
distribution-, and ensemble-based classification models. The 
models were all trained through a supervised learning approach 
on data created in MATLAB simulation. The training data 
simulated a target transmitting at one-degree increments 
from -45° to 45° in azimuth and 60° to 120° in elevation. At each 
degree, additive white Gaussian noise was added to the 
incoming signal giving SNR = 0, 2, 4, 6, 8, and 10. The above 
settings resulted in a training set of 99918 truncated-
autocorrelation matrices covering the region. 

III. MODEL OPTIMIZATION 

The aforementioned six models with new simulated test data 
on a rotating platform were compared. The initial computation 
speed for the six models, averaged over 5000 calculations, is 
depicted by the blue lines in Figure 2. Only the tree model was 
faster than the MUSIC algorithm baseline (red dashed line). 
Several techniques were applied to these initial models to 
decrease the angle determination timing. 

A. Splitting the Model 

The first speed-up technique was splitting the models into two, 
one for azimuth and another for elevation. Breaking the single 
90-class model resulted in using ten azimuthal classes and nine 
elevation classes. When the models were separated, SVM and 
discriminant analysis calculation times improved dramatically. 
However, the other four models had longer calculation times. 
This contradiction is likely a function of the overhead of the 
algorithm as compared to the savings from class reduction. The 
two improved models are more computationally involved. This 
is because, SVM requires the calculation of multiple 
hyperplanes, and discriminant analysis does a statistical 
distribution for every class. Despite the inconclusive results, all 
the models saw a slight increase in misclassification. 

B. Dimensionality Reduction 

Dimensional reduction was applied to the feature space 
through principal component analysis (PCA). When reducing 
the feature space, some less relevant data must be discarded. 
Four different PCA transformations were applied to reduce the 
relevant data to 99%, 90%, 80%, and 50%. These reductions 
reduced the original 240 feature vector to 27, 16, 12, and 6, 
respectively. The 99% feature reduction decreased the 
calculation time for all the models. Surprisingly, each model 
also saw an improvement in the classification rate. However, 
further reduction from 99% to 50% did not produce a substantial 
impact on speed. That said, it did produce a slight increase in the 
misclassification rate for each step. The 90% reduction was 
chosen as the optimal compromise between speed and 
performance.  

C. Snapshot Reduction 

DF systems, especially those utilizing array processing 
methods, may require many snapshots for an accurate 

estimation. The MUSIC algorithm, in particular, needs 
hundreds of snapshots to resolve between two targets. All 
training data used the ergodic average of 500 snapshots for the 
AC matrix. Reducing snapshots can help improve an 
algorithm’s calculation speed and allow it to track fast-moving 
targets in real time. This snapshot reduction helped increase 
decision speed for each model with negligible impact on the 
accuracy. Notably, reducing the KNN model down to 200 
snapshots only increased the misclassification rate by 0.013%. 

IV. CONCLUSION 

Multiple approaches were considered to reduce the 
computational burden for conventional direction-finding 
techniques. ML was used, with various tweaks to provide 
dramatically improved results based on application type. Each 
of the six considered models had improved calculation speeds, 
and some were faster and more accurate than the MUSIC 
algorithm. The optimized calculation speeds are shown by the 
orange lines in Figure 2.  
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Figure 2. Calculation times the ML models for 5000 calculations.  
Blue lines: original calculation speed; Orange lines: optimized calculation 

speed; Red dash: MUSIC algorithm (baseline). 
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