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Abstract—The distorted Born iterative method (DBIM) is a
popular technique for reconstructing a dielectric profile from
scattered fields. However, it is more challenging to reliably pro-
duce high-fidelity imagery with DBIM when the aperture formed
by the sensors does not fully surround the region of interest and
when noise significantly degrades the quality of the data. We
propose a frequency beamforming enhancement to DBIM which
builds on the previously studied spatial beamforming-enhanced
DBIM by focusing across both space and frequency prior to
solving for the dielectric contrast. Results for simulated data
demonstrate that the frequency beamforming enhancement to
DBIM results in better overall reconstructions and less sensitivity
to the choice of the regularization parameter as compared to
traditional DBIM and spatial beamforming-enhanced DBIM.

I. INTRODUCTION

Electromagnetic quantitative inverse scattering (QIS) is the
process of recovering both a target shape and dielectric profile
from scattered electric fields. In an ideal imaging scenario, the
target is fully surrounded by antennas and data is collected
across multiple widely spaced frequencies, resulting in a
dataset with significant spatial and frequency diversity which
mitigates the ill-posed nature of the inverse problem. However,
there are many practical scenarios in which antennas can
only be placed across a limited aperture and data can only
be collected across a narrow bandwidth due to geometry
and cost constraints. This results in a reduction of spatial
and frequency information which manifests itself through
heightened sensitivity to noise, model error, and parameter
selection.

A previously proposed spatial beamforming-enhanced
(SBE) QIS method [1] focused the signals in space before
carrying out a traditional DBIM [2] optimization. The beam-
forming in [1] introduced a spatial averaging feature that
discouraged large changes between adjacent pixels, resulting
in the solution being more robust to perturbations. In addi-
tion, coherent summation of the signal from target features
decreased the DBIM algorithm’s sensitivity to noise. We
hypothesize that additional robustness could be achieved even
with a small-bandwidth signal by focusing across space and
frequency simultaneously, and we refer to this new approach
as frequency beamforming-enhanced (FBE) DBIM.

II. BEAMFORMING-DBIM

A. Distorted Born Iterative Method

DBIM is a quantitative and iterative reconstruction tech-
nique which uses successive linearizations of the total electric
field and updates of the dyadic Green’s function in order to
build an approximation of the dielectric properties of a region

of interest Ω. Beginning with the Born-approximated integral
solution to the Helmholtz equation, we have

Es(rT , rO;ω) = (1)

ω2ϵ0µ0

∫
Ω

Gb(rO, r
′;ω)Ei(rT , r

′;ω)δρ(r′)dr′,

where Es, Ei are the scattered and incident electric fields,
rT , rO are the locations of the transmitting and receiving
antennas, ω is the angular frequency, ϵ0 and µ0 are the
background permittivity and permeability, Gb is the dyadic
Green’s function, r′ ∈ Ω, and δρ is the dielectric contrast.

Equation (1) is discretized to form the linear system
A(ω)x = b(ω), where A(ω) represents the integral operator
at frequency ω, x contains the values of δρ on each pixel,
and b contains the scattered electric field data at frequency
ω. Multiple frequencies ω1, · · · , ωF can be incorporated by
stacking matrices A(ωi) and vectors b(ωi) to form the larger
system denoted ASx = bS . We add a Tikhonov regularization
term and write the solution as

x = argminx̃

{
||ASx̃− bS ||22 + α||x̃||22

}
, (2)

where α is a regularization parameter.
For F given matrices of bistatic scattering data {D(ωi) | i =

1, . . . , F} where Dnm(ωi) = Es(rTn
, rOm

, ωi), the DBIM al-
gorithm proceeds by selecting a starting value of the dielectric
properties ρ, computing the incident field and Green’s function
to form the linear system ASx = bS , solving the minimization
problem in equation (2), and updating the dielectric properties
through ρ = ρ+δρ. This process is repeated until a termination
condition is reached.

B. DBIM with Spatial Beamforming Enhancement

In order to describe the spatial beamforming enhance-
ment to DBIM [1], we first introduce the following nota-
tion. Let ei(r′;ω) = [Ei(r1, r

′;ω) . . . Ei(rK , r′;ω)]T and
gb(r

′;ω) = [Gb(r1, r
′;ω) . . . Gb(rK , r′;ω)]T . Now, let

wrf
= gb(rf )/||gb(rf )|| be a beamforming weight vector

designed to focus the transmitted and received signals at
location rf . We write the linear system focused at location
rf as

wH
rf
D(ω)w∗

rf
= (3)

ω2ϵ0µ0

∫
Ω

wH
rf
ei(r

′;ω)gT
b (r

′;ω)w∗
rf
δρ(r′)dr′.

We discretize the linear system in equation (3) for multi-
ple focus locations to give the beamformed linear system
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AB(ω)x = bB(ω). The SBE-DBIM algorithm proceeds as
before with the beamformed linear system replacing the linear
system AS(ω)x = bS(ω).

C. DBIM with Frequency Beamforming Enhancement

The conventional way to use multiple frequencies in SBE-
DBIM is to stack the matrices AB(ω1), . . . ,AB(ωF ) and
right-hand side vectors bB(ω1), . . . , bB(ωF ) and solve the
resulting linear system. We propose to instead add a focusing
step across frequency, giving the linear system∫ ωF

ω1

wH
rf
D(ω′)w∗

rf
dω′ = (4)∫ ωF

ω1

(ω′)2ϵ0µ0

∫
Ω

wH
rf
ei(r

′;ω′)gT
b (r

′;ω′)w∗
rf
δρ(r′)dr′dω′.

In discretized form, we have[
F∑
i=1

AB(ωi)

]
x =

[
F∑
i=1

bB(ωi)

]
. (5)

This linear system replaces AS(ω)x = bS(ω) in the
traditional multi-frequency DBIM algorithm.

III. RESULTS

We present results for simulated data from an L-shaped
dielectric target with side length 1 m and relative permittivity
ϵr = 2. Data was simulated via a 2-dimensional transverse-
magnetic finite-difference time-domain simulation with anten-
nas distributed across an array with aperture size 90◦ (see
Figure 1). Signal phasors were acquired from 100−145 MHz
with 5 MHz frequency spacing. Gaussian noise was added
to the array of bistatic scattering data in order to simulate
data with SNR values of 34 dB, 20 dB, 10 dB, and 5 dB.
Reconstructions were run for eight different values of α evenly
spaced on a logarithmic scale from 10−6 to 10 for each of
these four different noisy data sets. For both SBE-DBIM and
FBE-DBIM, 121 beamforming foci were distributed in the
domain with spacing 0.7 m in each direction.

Figure 2 displays reconstructions for traditional DBIM,
SBE-DBIM, and FBE-DBIM for four different values of α
at SNR 20 dB. The left side of Figure 3 shows the values
of the L2 error of the difference between the reconstructed
relative permittivity and true relative permittivity against the
regularization parameter, while the right side of Figure 3
displays the L2 error of the optimal reconstruction at each
SNR value, selected using a heuristic similar to the L-curve
method [3].

IV. CONCLUSIONS

The results presented for the L-shaped scatterer in Figures 2
and 3 show that the FBE-DBIM algorithm outperformed both
standard DBIM and SBE-DBIM for the scenario described in
Section III. In particular, the FBE-DBIM algorithm displays
less sensitivity to the choice of the regularization parameter
α. In addition, as the SNR degrades to 20 dB and below,
the frequency beamforming enhancement produces the optimal

reconstruction both qualitatively and with respect to the L2

error.

Fig. 1: L-shaped target with relative permittivity ϵr = 2 and location of the
90◦ aperture used to collect data.

Fig. 2: Reconstructed relative permittivity of L-shaped target for four values
of α with an SNR of 20 dB.

Fig. 3: Plots of the L2 error in the reconstructed relative permittivity against
α (for an SNR of 20 dB) and the L2 error against SNR.
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