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Abstract—In this paper, a fast forward modeling framework
for predicting the logging-while-drilling (LWD) tool responses
is presented. Unlike the traditional numerical methods based
on the finite difference or finite element method, the proposed
approach makes use of a deep neural network (DNN). During
the offline training stage, the DNN is trained to extract the
mapping from the formation parameters to tool responses. Then
it can be used to predict the tool responses immediately given the
formation parameters. The target application is the directional
LWD operations, where the formation resistivity model has to be
updated on the fly. This requires an extremely efficient forward
modeling of LWD tool responses. Numerical tests are presented
and results indicate the proposed method is outperforming the
conventional methods.

I. INTRODUCTION

Electromagnetic (EM) logging-while-drilling (LWD) is
widely used in directional drilling for oil and gas exploration
[1]. During the drilling process, the well trajectory is adjusted
on the fly. This requires updating the formation resistivity
model in real time to facilitate decision-making of the well
trajectory. Equivalently, the inverse problem must be solved
in real time, where the forward modeling is executed in an
iterative manner. Therefore, an extremely efficient forward
modeling of LWD tool responses is indispensable. In current
literature [2], [3], [4], [5], [6], the majority of research works
performs the forward modeling by assuming the formation
is 1-D parallel layered, i.e., the formation property remains
constant within each horizontal layer and all layers are stacked
vertically. However, this assumption does not hold for complex
formations, such as fault and pinch-out. The 1-D forward
modeling will consequently give rise to incorrect results for
such complex formations.

Recently, Yan et al. [7] investigated a 2-D pixel-based
inversion that employs the 2.5-D finite difference method
(FDM) as the forward modeling for complex formations. The
inversion results indicate the 2-D inversion can infer both
formation resistivity and dielectric constant with high accu-
racy. However, the computational cost of the 2-D inversion is
inevitably high due to the time-consuming forward modeling.
The objective of this paper is to develop a surrogate model to
accelerate the 2.5-D forward modeling. The surrogate model is
constructed by a deep neural network (DNN). To estimate the
accuracy of the DNN, tool responses predicted by the DNN
are compared against the exact values obtained by the 2.5-

Fig. 1. Diagram of the DNN-assisted fast forward modeling.

D FDM calculation [8]. The comparison gives a good match
with a relative error less than 5%. The obtained acceleration of
24000 indicates the DNN is capable of performing fast forward
modeling of EM LWD tool responses in complex formations.

II. DNN ASSISTED FAST FORWARD MODELING

The diagram of the DNN assisted forward modeling is
shown in Fig. 1. In the first stage, a DNN is used for
earth model classification. Briefly, the formation resistivity
distribution is fed into a neural network and the output is
the formation type. Several particular formation types are
considered here. As long as the formation type is determined,
the corresponding surrogate model maps the formation param-
eters such as resistivity and geological structures to the tool
responses. For each formation type, a fast surrogate model
will be generated using another DNN. The design of the
DNN contains two stages, including offline training and online
prediction, as shown in Fig. 2(a). During the training stage,
we use synthetic data generated by the 2.5-D FDM algorithm
to feed into the DNN. The DNN is able to extract the mapping
from the formation parameters to tool responses until the
training converges, i.e., Y = F(M) in Fig. 2(a). Then the
DNN is used to immediately predict the tool responses for
given formation parameters.
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Fig. 2. (a) Diagram of the DNN training and predication; (b) 2-D fault
formation.

III. NUMERICAL RESULTS

In this section, simulation results are presented to demon-
strate the efficiency and accuracy of the proposed DNN as
a forward modeling tool. For an illustrative purpose, we only
show a particular formation type, fault, as depicted in Fig. 2(b).
It should be noted that the construction of the surrogate model
can be extended to other complex formations, such as water
coning. In Fig. 2(b), the fault structure is characterized by 9
independent parameters, including distances (d0, d1, d2, d3),
tool’s angles (θ0, θ1), and resistivities (ρ1, ρ2, ρ3). The range
and number of sampling points of the parameters are listed in
Table I. There will be 405000 sets of the parameters in total.
Note that 2 spacings between the receiver and transmitter and
3 operating frequencies are used. In addition, for each spacing
and frequency, there are 8 tool responses [7]. Therefore, 48
tool responses will be generated for each group of formation
parameters. The synthetic dataset will be a 405000×48 table.
90% of the synthetic data is used for training and the remaining
data is used for test. Two examples are shown in Fig. 3. In
each example, 48 tool responses are computed by both 2.5-D
FDM and the surrogate model given the formation parameters.
Left subplots in Fig. 3 show good agreements between the
two approaches. The right subplots indicate that maximum
relative errors are less than 5%. Meanwhile, in an Intel Core i9
2.9GHz CPU laptop, the conventional FDM takes about 120 s
to calculate 48 tool responses for each group of formation
parameters, while the DNN only takes 0.005 s. This suggests
that the DNN has the capability of accelerating the forward
modeling up to 24000 times for a single group of formation
parameters.

TABLE I
FORMATION MODEL PARAMETERS AND THEIR RANGE.

Parameter Min. Value Max. Value Sampling points
d0 −15 m 15 m 6
d1 −10 m 10 m 5
d2 −10 m 10 m 5
d3 3 m 20 m 3
θ0 65° 115° 3
θ1 −10° 10° 3
ρ1 1 Ω m 100 Ω m 4
ρ2 1 Ω m 100 Ω m 5
ρ3 1 Ω m 100 Ω m 5
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Fig. 3. Predicted tool responses of fault formation: (a) Example 1; (b)
Example 2.

IV. CONCLUSION

A fast and accurate methodology to simulate the LWD tool
responses in complex formations is presented. In principle, the
proposed method makes use of a deep neural network to build
the surrogate models for different formation types. Numerical
examples suggest that the proposed method enables real-time
forward and inverse modeling of electromagnetic LWD in
complex formations.
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