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Abstract—The radiative transfer equation (RTE) for two-
dimensional problem is solved using the parallel space-angle
discontinuous Galerkin (DG) finite element method (FEM). To
parallelize the solving process, both domain decomposition (DD)
and angular decomposition (AD) methods are applied. These
methods are validated against exact solutions. A few benchmark
problems are investigated to study the performance of the parallel
DG solver.

I. INTRODUCTION

The radiative transfer equation (RTE) describes radiative
intensity in a medium affected by absorption, emission, and
scattering processes. The difficulty of solving RTE either
analytically or numerically is that it is an integro-differential
partial different equation with multi-dimensions. Over the past
few decades, several numerical techniques for solving the RTE
have been introduced. These include, but are certainly not
limited to, Monte Carlo methods, discrete-ordinate methods,
spherical harmonics methods, spectral methods, finite differ-
ence methods, and finite element methods. Methods involving
discrete ordinates have received particular attention in the
literature, for their easy implementation and parallelization
for large scale computation. In spite of their popularity, the
discrete ordinate methods are not the only methods used
to solve the RTE. Discontinuous Galerkin (DG) methods
relax the continuity constraint of continuous finite element
methods (FEM), where jump solution between elements not
only is enforced weakly but also is based on wave propagation
direction. In addition, the DG method has its natural advantage
in parallel computing compared to the continuous FEMs for its
weaker coupling of elements. Previous work has proved that
the space-angle DG method can be applied to solving the RTEs
with high order precision [1], [2], [3], [4] and has the potential
to do large scale computation in parallel. In this paper, a
parallel space-angle DG method with angular decomposition
and domain decomposition is introduced to solve the steady
state two-dimensional radiative transfer problems.

II. FORMULATION & PARALLEL IMPLEMENTATION

For steady state two-dimensional radiative transfer prob-
lems, the radiative intensity turns out to be a function of four

variables, I = I(x, y, µ, ϕ). The 2D RTE for an emitting,
absorbing, and anisotropically scattering medium is written
as, √
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IΦ(µ, ϕ, µ′, ϕ′)dµ′dϕ′,

(1)

where β is the extinction coefficient, κ is the absorption
coefficient, σs is the scattering coefficient, Φ (ŝ, ŝ′) is known
as the phase function.

Fig. 1. A shcemetic of the DD method and AD method.

In a DG formulation, residuals (errors) must be specified
both in the interior and on the boundary of elements. The
weighted residual (WR) of the finite element formulations
formed by multiplying the RTE (Eqn. 1) by the weight
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where I∗ is the target value in the DG formulation, Q is
the element, ∂Q is the element boundary, n is the normal
vector of the element facet. The weight function Ĥ and trial
solution I are polynomials of order p in both space and angle,
interpolated with respect to a local coordinate system. The
target value I∗ corresponds to the upstream value along the
direction of wave propagation where ŝ · n < 0 is the inflow
direction and ŝ · n > 0 is the outflow direction.

To parallelize the 2D RTE solving process, either the spatial
mesh or the extruded angular mesh is split into n sub-domains.
The former method is called domain decomposition (DD) and
the latter one is called angular decomposition (AD) [5]. Fig.
1 illustrates the space and angle partitioning. For the DD
method, the spatial mesh is divided into 4 sub-domains in
different colors. The angular mesh in each sub-domain has
to be same in order to communicate through processors. All
the 4 sub-domains are assigned to a 4 MPI processes to
solve the RTE in the sub-domains simultaneously. For each
sub-domain interface, target values are the upstream values
depending on the previous iteration from its neighbor sub-
domain. In practice, after solving the RTE in the sub-domains,
the solutions on the sub-domain interface are simply swapped.
The iteration steps depend on the number of MPI processes.
If 4 MPI processes are used, 3 iteration steps are required.

For the AD method, as shown in Fig. 1, the angular mesh is
divided into 4 sub-domains in 4 different patterns. Similarly,
all the 4 sub-domains are assigned to a 4 MPI processes to
solve the RTE in the sub-domains simultaneously. However,
if the angular integration involved, instead of swapping the
solution on interfaces, a shared memory of accessing the
information at each quadrature point is required and the RTE
is solved iteratively.

III. NUMERICAL EXAMPLES

The Method of Manufactured Solution (MMS) is used to
validate the parallel 2D RTE DG solver. In the MMS, an
exact solution is given as an extra source term in the DG
formulation. If the manufactured solution space belongs to the
space of finite element solution, i.e., when it is a polynomial
of order equal or less than that used to interpolate the trial
solution, I , the exact solution is recovered. Both the DD
method and the AD method capture the exact solutions.

A benchmark problem of an anisotropically scattering
medium in a rectangular enclosure is investigated. The size
of the rectangle is 1 × 1. The incident radiation on the left
boundary is Ī = 1. On the rest boundaries, the intensity

remains 0. The Rayleigh phase function is employed in this
problem. The extinction coefficient is β = 1. The scattering
coefficient is σs = 0.5. The result is shown in Fig. 2 in
different directions.

Fig. 2. Contour plot of radiation intensity of the benchmark problem at four
different directions.

IV. CONCLUSIONS

This paper has presented a parallel DG method for the
numerical solution of a 2D radiative transfer problem with
both DD method and AD method. The parallel DG method
is essential and promising when solving a large system. To
combine the DD method and AD method is our future work
in order to make the space-angle DG method fully parallel.
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