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Abstract—This paper aims to design an appropriate power con-
trol policy of the secondary user (SU) to share the spectrum with
the primary user without harmful interference. With dynamic
spectrum environment, we develop a power control policy based
on deep reinforcement learning with Deep Q network (DQN) that
the secondary can intelligently adjust his transmit power. And
reward function is properly designed to avoid the sparse reward
problem which may cause the secondary user cannot adjust to
effective power in limited steps and finally fails to transmit. Our
experiment result reveals that under the help of the proposed
network and reward function, the secondary user can fast and
efficiently adjust to effective power from any initial state.

Index Terms—Cognitive radio, spectrum sharing, power con-
trol policy, deep reinforcement learning, sparse reward

I. INTRODUCTION

Cognitive radio (CR) put forward by Joseph Mitola is
considered as an effective method to improve the spectrum
utilization. And the concept of spectrum sharing through CR
is highly motivated [1]. During spectrum sharing, the CR user
as the secondary user is allowed to use the licensed spectrum
without harmful interference.

Most of existing researches consider the power control
problem from the perspective of optimization [2] or game
theory [3][4]. However, the above methods require some prior
information, such as channel state or primary user power.
Hence, the method of this paper is based on deep reinforce-
ment learning (DRL) that helps agents to learn from the
interaction with environment. Sparse reward problem is often
encountered in the reinforcement learning, which reflects in
power control that the SU cannot adjust to effective power
in limited steps and eventually fails in data transmission. The
object of the paper is to make the SU intelligently adjust its
transmit power without harmful interference while ensuring
quality of service (QoS) of both the primary user (PU) and
the SU. Whats more, the reward function is properly designed
to avoid sparse reward problem.

The rest of paper is organized as follows. Section Two
provides the description of system model. In Section Three, a
learning algorithm based on DQN is developed. The experi-
ment results and analysis are conducted in Section Four.

II. SYSTEM MODEL

Consider a primary user and a secondary user share the
same spectrum in Additive White Gaussian Noise channel.
We assume that both the PU and the SU can successfully
transmit their data with guaranteeing their QoS, only if the
corresponding SINR is over the respective required threshold
η1 and η2. All possibilities of PU power are regulated to a
set P1 with L1 elements. Moreover, there are N sensor nodes
to spatially collect the received signal strength information[5].
P r
n(k) represents the received power of nth node at kth time

frame,which consists of the transmit power of the PU and SU
and a Gaussian random variable, so the state s(k) is a received
power vector of N nodes.

The action of SU is defined as the transmit power it chooses
from a finite set P2 with L2 elements.In order to avoid sparse
reward, we appropriately designed the reward function to make
the SU get feedback at every step. The reward function is
defined as

r(k) =


a if SINR1 ≥ η1 and SINR2 ≥ η2
b if SINR1 < η1 and SINR2 ≥ η2
c if SINR1 ≥ η1 and SINR2 < η2
d if SINR1 < η1 and SINR2 < η2
b if steps > T

(1)

where the parameter a is positive, which means both suc-
cessfully transmit data; the parameter b is negative, which
means the SU has affected the PU and should be punished;
the parameter c is a relatively enough small positive number
to protect the PU activity; in the same way, the parameter d is
a relatively enough small negative number. Lastly, when the
SU did not find the proper transmit power within a certain
steps T, it also should be punished, and the reward is equal to
the second condition b.

III. DEEP REINFORCEMENT LEARNING BASED ON
DEEP Q NETWORK FOR POWER CONTROL

The paper aims to make the SU intelligently adjust its
transmitter power within limited steps from any initial state.
Abstractly in reinforcement learning, the agent learns the op-
timal policy π∗ for decision-making. The Deep Q Network is
proposed by Google Deepmind [6]. The table in conventional
Q-learning is replaced by neural network to approximate the
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state-action function. The training data of DQN is generated
from the interaction with environment. In state s(k), the SU
select the action a(k) of the highest Q-value with probability
εk or a random action in case there is greater state which
has not been explored, and get a reward r(k), then reach the
next state s(k+ 1). The above process consists of a transition
d(k) = {s(k), a(k), r(k), s(k+ 1)} stored into Replay Buffer
D or memory. And a minibatch Nbatch is uniformly sampled
from Replay Buffer to train the neural network. Motivated
by the paper [6], we builds a target network which has the
same structure with the former network to get robust model.
Therefore, the objective function of DQN is the to minimize
the square error of two networks.

Loss(θ) = min
θ

∑
k∈Nbatch

(Qtarget −Q(s(k), a(k); θ))
2 (2)

where θ means the biases and weights in the DQN. When
the proposed power control policy reaches the terminal, both
the PU and the SU step into a data transmission period, so the
state will stay at the terminal until the transmission finishes.
And the SU finally learns to adjust its power such that the
next state remains the terminal.

IV. EXPERIMENT RESULTS
In our experiment, the simulation parameters are set as

following. The sets of PUs power and SUs power (in Watt)
are respectively assumed as P1 = {4.0, 4.5, · · · , 8.0} and
P2 = {1.0, 1.5, · · · , 6.0}. The Neural network in DQN has
two fully-connected hidden layers and respective activation
functions are ReLU and tanh. The episodes of reinforcement
learning are 1000 with T=35 steps at most for every episode.
It is noted that the above structure and parameters can be
modified depending on real environment.

Fig. 1. Average Steps per Five Episodes

We compare the proposed reward function with the reward
function in [5] which might cause sparse reward problem.
From the Figure 1, we can see that before 500 episodes,
the two curves fluctuate with a large variance, since the SU
is still at exploration stage and do not learned good policy.
After 500 episodes, the SU with the proposed reward function
exploits the learned policy, and the average steps obviously

decreases, finally converges 3-4 steps with a little fluctuation.
The reason why there is still fluctuation is the exploitation
probability is 0.9, so the SU explores the environment with 0.1
probability to prevent the better state from not being explored.
The exploitation probability can be adjusted to 1.0 according
to practical needs. On the other hand, the SU with reward
function in [5] still fluctuates a lot at exploitation part, due
to sparse reward problem, that is, the SU did not get proper
feedback from reward function and did not learn good policy.

Fig. 2. Cumulative Average Steps

Values of cumulative average steps before 10 episodes are
removed from Figure 2 due to random exploration. We can
see from Figure 2 that two curves gradually decrease with
episodes, which reveals SUs can learn policy from both reward
function based on DQN. The curve with the proposed reward
function clearly decreases faster and reaches smaller steps,
while the curve with reward function in [5] seldom decreases
after 200 episodes, because its steps fluctuates with a large
variance which can be known from Figure 1.
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