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1. Introduction.    

We have developed a new series of 3D forward modeling codes for various 
geoelectromagnetics (geoEM) applications, including: (1) induction logging in 
deviated wells, (2) grounded and airborne controlled-source EM, (3) magnetotellurics 
(MT), and (4) global induction studies. 

This series of codes has proven to be effective way to simulate geoEM fields in 
complex 3D environment [Avdeev et al., 2002a,b; Avdeev, 2002]. Among the main 
features of these codes are the ability to work on PC platforms, and the combination of 
a fast, but exact state-of-the-art integral equation (IE) approach [Singer, 1995; 
Pankratov et al., 1995,1997; Singer and Fainberg, 1995,1997] with a modern Krylov 
subspace iteration [Greenbaum, 1997].  The codes have been validated against both 
semi-analytical solutions [Chew, 1984; Liu, 1993], 3D IE solutions [Wannamaker, 
1991], and 3D FD solutions [Mackie et al., 1993; Alumbaugh et al., 1996; Newman & 
Alumbaugh, 2002]. Moreover, this series of codes are able to give accurate results for 
lateral contrast of electrical resistivity as high as 100,000, simulate the responses from 
DC up to 50 MHz frequency, account for the IP and displacement currents, incoporate 
anisotropic electrical resistivities, and run large-scale problems involving up to 
8,000,000 cells. 

In this paper we first review our IE approach following [Avdeev et al., 2002a]. 
Then we present model examples for induction logging and airborne EM. 
 
2. Theory.  

Total , reference  and scattered  
geoEM fields in 3D earth’s models satisfy respective Maxwell’s equations: 
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reference one so that we can easily solve Maxwell’s equations of (2). Thus hereinafter 
we assume that the reference fields ( are known. From eq.(3) it easy to find that )

.SS1 ),()(
1 qz

o
z

i
jEE =−×∇×∇ − ωζµ

ω
                                    (5) 

Applying the Green’s function technique to eq. (5), one can derive 
conventional scattering equation with respect to electric field, cf. [Dmitriev, 1969; 
Weidelt, 1975] 
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G  is 3x3 dyadic for electric-to-electric Green’s function of 

1D reference formation of conductivity ),( ωζ z
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 [Avdeev et al., 1997], , 

. Formal solution of eq. (6) is expressed as an infinite Neumann series  
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As a rule, the series given in eq. (7) does not converge. But if we add to both sides of 
eq. (6) term )())()()(( S

o

2
2

1 rEr zz ζζλ −−

→
S

 (that is equivalent to the shift of spectrum of 

operator) and change unknown ( E ) as Q χ

),)()((2
1 o

o

S*

o

1 EE ζζζζλχ −++= −                               (8) 

where )Re,Re,Re(),( ozoodiagz ζζζωλ ττ= , we readily derive the scattering 

equation of the iterative dissipative method (MIDM) [Singer, 1995; Pankratov et al., 
1995;1997; Singer and Fainberg, 1995,1997]  
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ληξλδηδξδηξ +−=  δ  is the Dirac’s 

delta-function, 1  is the identity operator. A remarkable feature of eq. (9) is that it has a 
contracting kernel, i.e. 
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converges for any frequency and for any contrast of conductivity. Summation (11) is 
similar to iteration  
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Based on iteration of (12), a number of numerical implementations have been recently 
developed [Avdeev et al., 1997,1998,1999; Singer et al., 1999; Zhdanov and Fang, 
1997]. However, it is easy to figure out that iteration of (12) is nothing more than 
simple iteration for solving the linear system  
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where is the lateral contrast of conductivity.) In [Avdeev et al, 2002a] it is 
demonstrated that a Krylov subspace iteration [Greenbaum, 1997], outperforms simple 
iteration of (12) by order of the magnitude. So, in order to solve system of (13) we 
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apply the generalized biconjugate gradient (GPBiCG) method [Zhang, 1997] rather 
than simple iteration of (12). To stabilize the erratic convergence behavior of this 
method we have also incorporated the quasi-minimal residual (QMR) smoothing of 
[Zhou and Walker, 1994] into the iteration scheme. We stop iteration when 
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where  is electric-to-magnetic Green's tensor function of the reference formation 
[Avdeev et al., 1997]. The total fields are obtained by adding the appropriate reference 
fields to the scattered fields. 
 
3. Induction logging example.  

Fig. 1 presents the induction logs for the 3D model of a 45-degree deviated 
borehole. Curves are also shown for the case of a vertical borehole. The effect of the 
deviation is clearly seen. Very good agreement is observed between the solutions 
(discrepancies are less than few percent). Computational statistics for this simulation 
are listed in Table 1. 

 

Fig.1 (a) 45-degree deviated borehole intersecting a horizontal boundary; (b-d) comparison of 10-kHz, 160-
kHz and 5-MHz responses obtained from the IE (red lines) [Avdeev et al., 2002a] and finite-difference (blue 
lines) [Newman & Alumbaugh, 2002] solutions (redrawn from [Avdeev et al, 2002a]).

Table 1. The computational statistics (redrawn from [Avdeev et al., 2002a]). 
Method GGrriidd  NNxx××NNyy××NNzz FFrreeqquueennccyy,,  MMHHzz IItteerraattiioonnss--mm RRuunn  ttiimmee1),,  cc 
IE 31×31×32= 30,752 0.01, 0.16, 5 7 2950 
FD 563,328 435,334 435,334 0.01, 0.16, 5 1760001200 212156861101 

1)

1)Times are presented for Pentium/350MHz PC (IE code) and for IBM RS-6000 590 workstation (FD code). 

 
4. Airborne EM example.  

Fig. 2 shows a model of a vertical fault contact with surface topography. To 
the right of the fault, the earth has been thrust 10 m upwards. Our IE responses 



coincide with FD responses of [Alumbaugh et al., 1996] quite well. In order to 
demonstrate the topography effect the responses without the thrust are also shown.  
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Fig.2. (a) AEM system over a vertical contact and an earth’s uplift; 900-Hz АEM responses: (b),(c)
VMD exitation; (d),(e) HMD excitation (redrawn from [Avdeev et al.,1998]). 
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