Integral equation methods for solving problems of scattering on an unclosed cone structure

Vladimir A. Doroshenko
Kharkov National University of Radioelectronics
14, Lenin av., Kharkov, 61166, Ukraine
E-mail: vlad_doroshenko@yahoo.com

The method based on using the integral Kontorovich-Lebedev transforms and the semirinversion method is a successful one for studying boundary electrodynamics problems with single periodical slotted cone geometry(there is one cone strip in the period). Taking into consideration a multi-element cone structure(there are several strips in the period) makes applying the above mentioned method extremely tedious. The task of this work is to find a method that uses singular integral equation to solve an excitation problem for a periodic cone structure with any number of $\operatorname{strips}(S)$ in the period.

Let a semi-infinite perfectly conducting infinitely thin circular cone Σ with N equally spaced slots cut along the generatricies be excited by a radial harmonic electric or magnetic dipole. The angular width of the slots and the period of the cone are d and $l=2 \pi / N$ respectively. By virtue of introducing Debye potentials and the integral Kontorovich-Lebedev transforms the electrodynamics boundary problem is reduced to solving dual series equations for unknown Fourier coefficients $\hat{y}_{m, n}^{(j)}$ of electromagnetic field components. The dual series equations are equivalent to singular integral equations like these:

1) for electrical dipole excitation,$j=1$,
$\frac{1}{2 \pi} \int_{S} \hat{F}(\psi-\alpha) \Phi_{1}(\alpha) d \alpha+\frac{1}{2 \pi} \int_{S}\left[\hat{\mathbf{A}}_{n \pi}^{(1)}-\hat{K}_{1}(\psi-\alpha)\right] \Phi_{1}(\alpha) d \alpha=e^{i m_{0} \psi}$,
$\psi \in S: \frac{\pi d}{l}<|\psi| \leq \pi, \hat{F}(\psi-\alpha)=\sum_{n \neq 0} \frac{1}{N(n+v)} \frac{|n|}{n} e^{i n(\psi-\alpha)}$,
$\hat{K}_{1}(\psi-\alpha)=\sum_{n \neq 0} \frac{1}{N(n+v)} \frac{|n|}{n} \hat{\varepsilon}_{m, n}^{(1)} e^{i n(\psi-\alpha)} ;$
2) for magnetic dipole excitation, $j=2$,
$\frac{1}{\pi} \int_{S} \frac{\Phi_{2}(\xi)}{\xi-\psi_{1}} d \xi+\frac{1}{\pi} \int_{S} K\left(\xi-\psi_{1}\right) \Phi_{2}(\xi) d \xi=i e^{i m_{4} \psi_{1}}, \psi_{1} \in S$,
$K\left(\xi-\Psi_{1}\right)=\frac{1}{2} \operatorname{ctg} \frac{\xi-\Psi_{1}}{2}-\frac{1}{\xi-\Psi_{1}}-\frac{i}{2 N}\left(\frac{\pi e^{i v \xi}}{\sin \pi V}-\frac{1}{V}\right) \frac{1}{A_{n \pi}^{(2)}}-\frac{i}{2} \sum_{n \neq 0} \frac{|n|}{n} \hat{\varepsilon}_{m, n}^{(2)} e^{i n\left(\Psi_{1}-\xi\right)} ;$
$\Phi_{j}(\psi)=\sum_{n=-\infty}^{+\infty} \hat{y}_{m, n}^{(j)} e^{i n \psi}, \quad \psi \in[-\pi, \pi], \hat{\varepsilon}_{m, n}^{(j)}=O\left(\frac{\sin ^{2} \gamma}{N^{2}(n+v)^{2}}\right),-1 / 2 \leq \nu<1 / 2$,
$m, m_{0} \in Z, \hat{A}_{n \pi}^{(1)}, A_{n \pi}^{(2)}$ are known.
These integral equations can be solved numerically by the descrete singularities method.
