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1. INTRODUCTION

Recently, a lot of research efforts have been devoted to periodic planar surfaces
used to model new equivalent boundary conditions and various engineering
applications have accompanied the theoretical studies. In some applications, these
surfaces constitute the modern version of transversely corrugated structures, often
used to improve the performance of feed-horns. In the early nineties, the so-called
“soft” and “hard” surfaces were introduced and their relation with the corrugated
surfaces discussed [1] (the terminology is derived from acoustics). The soft
surface behaves like a perfectly electric conductor (PEC) in H plane and as a
perfectly magnetic conductor (PMC) in the E-plane, and vice versa for the hard
surface.
This paper presents an investigation on the modal wave propagation in circular
and rectangular waveguides with perfectly soft and hard boundary conditions on
the walls [3]. For the case of soft rectangular waveguides, the solution cannot be
derived in analytical form, thus requiring a numerical analysis. The knowledge of
the field distribution associated to perfectly hard or soft waveguide modes,
although a schematization of the reality, may help the design of corrugated horns
or quasi-TEM waveguides, and to find new uses of soft and hard surfaces.

2. PEC/PMC STRIP MODEL FOR IDEAL HARD AND SOFT SURFACES
Let us consider an
anisotropic surface
impedance defined by

lHZtHZlEtE tlltlt
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where tZ  and lZ  are the

transverse and longitudinal
impedances. Ideal soft
(hard) surfaces are
characterized by ∞=lZ

( 0)lZ = and

0tZ = ( tZ = ∞ ) [1]. The

ideal hard surface may be represented by a strip-model constituted by alternation
of PEC and PMC strips with vanishing widths, oriented in the longitudinal l-
direction of propagation (strip-direction, see Fig. 1). The longitudinal PEC strips
impose the annulment of lE , thus satisfying the longitudinal impedance condition
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Fig. 1. PEC/PMC strip-model for Hard (left) and Soft (right)
surface
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Fig. 3 Strip line current distribution of hard circular and
rectangular waveguides (single and double arrows denotes
electric and magnetic currents)

lZ  = 0. Simultaneously, the

longitudinal PMC strip annuls lH ,

thus fulfilling the transverse
impedance condition tZ  = ��

Correspondingly, for modeling the
soft surface the strips are oriented
along the transverse direction t
(see Fig. 1) thus implying
vanishing of transverse
components for both electric and
magnetic fields. A modern
realization of artificially soft and
hard surfaces is presented in Fig. 2
[2], where the upper case consists

of close and narrow metal strips on a grounded dielectric substrate; for this case
the thickness of the slab determines the central operative frequency. The middle
and lower cases consists of wide metal strips short-circuited on the ground plane
at the edge. This allows to reduce the thickness of the slab, being the operative
frequency dictated by the strip width.
Coming back to the ideal PEC/PMC strip model, it is evident that the equivalent
currents induced on the surface are always oriented along the strips. This provides
a very simple guideline to interpret the physical behavior of hard and soft
waveguides. For instance, although the mode in hard and soft waveguides can be
derived by the conventional longitudinal potential approach a complete set of
modes can be alternatively obtained via radiation in free-space of longitudinally
or transversely polarized currents [3].

2. HARD WAVEGUIDES

Consider first a waveguide with hard boundary conditions on the walls (z is the
axis). Practical realization can be obtained by using the technological solutions
shown in Fig. 2. The most important and quite curious feature of this “hard
waveguide” is its compatibility with TEM mode propagation. Indeed,
independently on the cross-section profile, the boundary conditions impose

0supsup == zz HE  which are

automatically satisfied by a
uniform plane wave. Additionally,
this property is identically verified
for any polarisation of the plane
wave, thus leading to an invariance
of the TEM mode polarisation
when rotating the arbitrarily
shaped cross-section. As
mentioned before, the other modes
can be obtained by using a current

model where electric and magnetic currents are directed longitudinally. Examples
relevant to rectangular and circular cross-section are shown in Fig. 4. From this

Fig. 2 Different types of quasi-planar artificial soft or
hard surfaces. εeff stands for  εr  for the soft case and
εr  -1 for the hard case.
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Fig. 5. Strip line current distribution of a soft circular and
rectangular waveguide.
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(c)                                                             (d)

Fig. 4. Hard rectangular waveguide: (a) 11TM mode. (b) 11TE mode. Hard circular waveguide :(c) TM01 mode.

(d) TE01 mode. A strong distribution of the E- and H-field on the boundary can be observed.

model, it is evident that we can select independently uncoupled TE and TM mode
as associated to the radiation contributions from individual magnetic and electric
currents, respectively. By imposing an unknown wave-number for the z-
propagation, the various double-indexed TE or TM waveguide modes and the
relevant transverse eigenvalues are found by enforcing the hard boundary

conditions. This procedure is very simple for rectangular and circular waveguides
and leads to closed form expressions of the modes. However, it can be applied for
general cross-section by numerically solving the relevant homogeneous integral
equation.

3. SOFT WAVEGUIDES

For a rectangular or circular
waveguide with perfectly soft
condition at the walls, the “soft
modes” can be derived by
assuming transverse electric and
magnetic currents (Fig. 5). The
boundary conditions to be satisfied

are 0t C t CE H= = , where C  is

the contour of the structure. It is
clear from the current orientation
that TE and TM modes cannot satisfy independently the boundary conditions,
since both the z-components of the E- and H-field must co-exist. This also implies
the general difficulties in finding analytical expression of the modes even for
simple shapes. However, it can be shown surprisingly that for circular waveguides
an analytical hybrid-mode expression does exist (the formulation not showed here
is presented in [3] and also known from corrugated waveguides as a balanced
hybrid mode). Examples of soft hybrid modes for circular waveguide are shown
in Fig. 6.
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Fig. 7. Numerical maps for hybrid modes
in soft rectangular waveguide:(a) basic
mode (b) first higher order mode.

Oppositely, for a soft rectangular waveguide no exact analytical solution is found.
The results presented in Fig. 7.a-b, have been obtained by a numerical approach
(G2DMULT, [4-5]). Note in particular that the fundamental propagating mode in
the soft rectangular waveguide can be approximated very well by the zTE10

associated to a rectangular waveguide with vertical PEC walls and horizontal
perfectly soft wall (the latter mode possesses an analytical expression). The

resemblance is not present for other modes. Then, the modes of the soft
rectangular waveguide look more similar to that of the soft circular waveguide.
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Fig. 6.  Soft circular waveguide: (a) 11HEM mode (b) 21HEM mode.




