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Abstract −−−− An extended multilevel fast multipole algorithm (MLFMA) formulation is presented that includes  
magnetic surface current densities of radiating apertures and impedance relations containing modal excitation terms. 
The method-of-moment (MoM) solution is based on a combined field integral equation (CFIE) written in terms of 
mixed potential form. Aperture waveguide modal eigenvectors and Rao-Wilton-Glisson (RWG) functions for 
triangular patches are utilized for basis functions of the magnetic and electric surface current densities, respectively. 
The applicability of the method is demonstrated at the examples of a rectangular horn cluster in a finite screen and a 
finite circular horn cluster feeding a subreflector.  Advantages and disadvantages of the MLFMA when applied for 
aperture array problems are discussed.  The method is verified by available measurements and reference calculations. 
 
INTRODUCTION 
 

Fast integral solvers based on the fast multipole method (FMM) [1] - [3], and more recently on the 
multilevel fast multipole algorithm  (MLFMA)  [1], [4] – [7], have proven being well appropriate   for 
large-scale scattering   problems.    In the matrix equations for N unknowns resulting from the method-
of-moment (MoM) solutions, the MLFMA allows matrix vector products being effected in O (N logN) 
operations [1], [4] – [7]. Applications of the MLFMA have mainly been restricted to scattering 
problems, so far. Due to its attractive efficiency potential, investigations of its applicability also to 
aperture radiating problems are desirable. 
 A MLFMA formulation for a single ridged horn has been discussed in [8]. First applications to 
rectangular apertures with an electric field integral equation (EFIE) approach have been introduced in 
[9]. This paper presents a combined field integral equation (CFIE) MFLMA solution with improved 
convergence for coupled rectangular or circular apertures in a finite screen, elucidates some 
advantages and disadvantages of the MLFMA at aperture radiating problems, and illustrates its 
applicability to a finite circular horn cluster feeding a subreflector.  
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THEORY 
 

The EFIE formulation has been described in [9]. Hence, for the desired CFIE to increase the 
convergence behavior of the MLFMA solution, we still need the magnetic field integral equation 
(MFIE) part.  
 On the surface with unit normal vector n̂ on finite structures of ideal conductivity with apertures 
(Fig. 1), the MFIE is formulated in terms of electric Js and magnetic Ms surface current densities in 
the usual way 
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where Js are expanded in Rao-Wilton-Glisson (RWG) basis functions if
� ; and for  Ms the normalized 

modal eigenvectors ˆig n= ×ie� of the apertures are chosen [10]. The MFIE (1) is scalar multiplied by 
if
� and integrated over the corresponding area of the basis functions, as well as scalar multiplied by 
ˆ in g× � and integrated over the aperture surfaces. This yields the linear equation system  
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where J, b are the vectors of corresponding expansion coefficients, and the matrix elements are given 
by 
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 For the MLFMA, the matrices are separated according to the principle [3] – [9] 
, , ,MoM MoM FMM FMM= +T Y T Y T Y  , (7) 

where the ‘near-neighbor’ parts TMoM , YMoM are solved directly by the standard MoM (after having 
extracted the singularity in the known way) with integrations only along the near neighbor range [3] – 
[7]. For the ’far-neighbor’ parts TFMM , YFMM the MLFMA yields for the matrix 3T analogue 
expressions to known formulations at scattering problems; for FMM

4T , we obtain 
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Fig. 2.  Geometrical relations for source and field points used in the MLFMA equations  



with the abbreviation 
( ) ( 2)

0

2 1; cos  h ( ) P (cos )l ll
l

lT
j

κ α κ α
∞

∞
=

+
=∑ , (10) 

where P are the Legendre polynomial, and h(2)  the spherical Hankel function of 2nd kind. The 
geometrical relations are elucidated in Fig. 2, k and FZ are the free space wavenumber ( k̂ the 
corresponding vector) and the free space wave impedance, respectively. 
 The expressions for Y in (2) are based on a mixed potential formulation.  The near-neighbor part is 
again given by standard MoM (singularities extracted); for the far-neighbor part FMM

1Y , we obtain 
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Similar expressions are found for FMM
2Y .

The CFIE is formulated as the linear combination of the EFIE with the MFIE using the parameter 
α [1] 
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 In addition to the field integral equations, we still have to formulate the impedance relations on the 
waveguide apertures. From the continuity of the tangential magnetic field strength on the apertures 

( ) ˆ2 n+ = ×inc r
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and with the sum expressions containing the modal eigenvectors h of the forward directed (p) and 
reflected (r) wave terms 
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we obtain with p r
i i= −h h , after scalar multiplication with ˆr

l lg n= ×e� and integration over the 
corresponding aperture areas,  
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This impedance relation contains the modal excitation term for an excitation with the i-th waveguide 
mode. The equation is correspondingly weighted and added to the lower part of the EFIE. 
 
RESULTS 
 

The first example are three radiating rectangular apertures according to Bird [11] but within a finite 
plate, shown in Fig. 3.  For the MLFMA, 7105 unknowns, 336 groups, 3 levels have been considered. 
A Cholesky pre-conditioner has been applied. The storage requirement was 180 MB.  
 

Fig. 3.  Three rectangular apertures according to [11], but in finite rectangular plate of size 100mm x 100mm. Aperture sizes: 
22.8mm2 center aperture, 15.7mm x 7.7mm lateral apertures, displacement 30mm, f = 12.5 GHz 



Good agreement with measurements provided in [11] up to +/- 90° can be stated. In comparison 
with own  MoM reference calculations (up to +/- 180°), however, it is evident that relative field values 
of around  –30dB are about the limit at this array radiation example that can reliably be resolved by 
the MLFMM. 
 To show the applicability for more complicated examples, a horn cluster consisting of four circular 
apertures in a finite circular screen together with a subreflector (Figs. 1, 4) is chosen. All apertures are 
assumed being excited with their fundamental modes, with same amplitude and phase. For the 
MLFMA, 12772 unknowns, 1616 groups, 4 levels have been considered. 6 modes are taken into 
account in each aperture. The storage requirement was 365 MB.   

 

Fig. 4. Four circular apertures in a finite circular metallic screen of diameter 50mm 
and thickness 10mm together with a subreflector (Fig. 1). Frequency 24 GHz.    

CONCLUSION  
 

An extended multilevel fast multipole algorithm (MLFMA) for finite aperture arrays has been 
described. The CFIE formulation written in terms of mixed potential form and the application of aper-
ture waveguide modal eigenvectors and Rao-Wilton-Glisson (RWG) functions for triangular patches 
as basis functions for the magnetic and electric surface current densities, respectively, yield stable and 
convergent results. The MLFMA leads to a significant reduction in required storage capacity; how-
ever, the resolution limit of about –30dB observed at a rectangular horn array could be problematic for 
this kind of applications, in particular when accurate cross-polarization predictions are required.  
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