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Abstract: In broadband phased arrays, the elements near the edges have a widely
deviating behavior. This is analyzed here with the help of a finite-by-infinite array
approach. The solution of the equations is dramatically accelerated by decomposing
the array into two approximate semi-infinite arrays (APSIA’s), the solution of which is
obtained recursively for arrays of increasing sizes. For very large arrays, the solution is
extrapolated further inside the array by using a model for the waves scattered by the
edges of the array. Simulations results are shown for arrays of tapered-slot antennas in
receiving conditions.

1 Introduction

Given the very strong couplings between the elements of broadband phased arrays,
elements near the edges present a widely deviating behavior with respect to the infinite-
array solution. If the array to be designed is rectangular, a good way of obtaining an
estimate of the effects of array truncation consists of simulating finite-by-infinite arrays.
For large arrays made of element having complex shapes, the solution of the finite-by-
infinite array problem may still require a prohibitive computation time.

This paper is concerned with a fast technique to solve the finite-by-infinite array equa-
tion system. This is done by decomposing the array into two approximate semi-infinite
arrays (recalled in Section 2). The major advantage of this representation is that the
difference w.r.t. the infinite-array solution may be regarded as a single wave scattered
from the unique edge of the array. The technique presented here consists of following
this wave in a recursive way to solve problems involving an increasing number of an-
tennas in the finite-array direction (Section 3). When this number becomes very large,
the edge-scattered waves can also be efficiently extrapolated (Section 3). Simulation
results are shown in Section 4, and conclusions are drawn in Section 5.

2 Decomposition into approximate semi-infinite arrays

The array structure to be simulated is depicted in Fig. 1. The example shown here
consists of an array of tapered-slot antennas which can be electrically connected to
each other. The array is finite in the X direction, and infinite in the Y direction. As
shown in Fig. 2, such an array can be decomposed into two approximate semi-infinite
arrays (APSIA’s). The connection between this decomposition and the fringe integral
equation approach [2] is described in [1]. The term “approximate” refers to the fact
that the currents induced on antennas N + 1 to ∞ are assumed to correspond to the
infinite-array solution. Despite this approximation, the equation depicted in Fig. 2
is exact. Hence, if a very fast solution can be found for the left (A) and right (B)
APSIA’s, the finite-by-infinite array solution can be solved exactly. The technique
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presented below for the solution of the APSIA problem is based on the properties of
the difference with respect to the infinite-array solution, which behaves like a current
wave launched at the unique edge of the array and decaying inside the structure.
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Figure 1: Reference configuration for
the antenna array.
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Figure 2: N-by-∞ array obtained using left
and right APSIA’s and the infinite array.

3 Solution of the APSIA problem

The equation system associated with the APSIA problem for N = 3 reads:
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where the xi vectors correspond to the unknown current coefficients on successive anten-
nas, and the vi vectors are the excitation vectors associated with the different antennas.
The Zp MoM impedance sub-matrix is related to basis and testing functions located
p array spacings apart in the finite-array direction. The vs

i vectors correspond to the
fields radiated by antennas N+1 to∞, convoluted with the testing functions of antenna
i:

vs
i = −Zs

i x∞ e−j nψx (2)

where Zs
i is computed in the same way as Zp, except for the Green’s function, which

corresponds to the Green’s function related to a semi-infinite array. An efficient al-
gorithm for the latter is described in [3]. The Zs

i matrix only needs to be computed
explicitely for i = N , for smaller values of i, the following recursion can be used:

Zs
i−1 = (Zs

i − Zn−i+1) e j ψx (3)

The solution procedure for a given APSIA problem is as follows:

• The left and right APSIA problems are solved in the brute-force way for N=3.

• The system of equations for theN+1 APSIA problem is established. This involves
(i) the extension of the left member of equation (1), through the computation of
ZN, and (ii) the update of the vs vectors, which is obtained with the help of the
recursion relation (3).

• The new equation system is solved iteratively, taking the xi’s obtained previously
on antennas 0 to N , and the infinite-array solution on antenna N + 1. The
efficiency of the method results from the good quality of this first guess.



When the array is very large, the approach presented above is accelerated by exploiting
the fact that the deviations w.r.t. the infinite-array solution can be described as waves
scattered by the edges. A first consequence of this is that the solution of APSIA prob-
lems with increasing parameter N are very close to each other. Indeed, the difference
between the true semi-infinite array and the APSIA resembles a wave propagating to-
wards the inside the array, and therefore has a limited effect towards the edge. Hence,
for large values of N , the currents on the first antennas do not need to be updated
anymore. This would not be true if two edges were considered.

Besides this, when the finite-array dimension becomes very large, the edge-scattered
wave can be extrapolated from the solutions obtained for the APSIA problems for
smaller values of parameter N (say N = n). Denoting by c(i) the port current at
antenna i, the edge-scattered wave for i > n is modeled as:

c(i) = c(n) (i/n)−q e−j k (i−n) a (4)

where a is the element spacing, k is the free-space wavenumber and q is the damping
exponent. Attempts have been made to obtain the exponent q from the solutions
related to APSIA problems of smaller sizes. However, we observed that a slight under-
estimation could have dramatic effects on the gobal solution of the finite-by-infinite
array. Hence, we decided to consider a fixed upper-bound value of q = 1.5.

4 Simulation results
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Figure 3: For an array infinite along ŷ, with 4 to 20 elements along x̂, illuminated by
a plane wave incident from θ = 30◦ and φ = 60◦, amplitudes and phases of the waves
scattered by the edges. Spacings: 12.7 cm, wavelength: 100 cm.

Examples are shown for an array whose elements have a height of 23.8 cm and 12.7
cm spacings. The simulations are performed in receiving conditions, and yield the
voltages impressed on the 100 Ω loads attached to the antennas. The antennas have 4
to 20 elements in the x̂ direction and are infinite in the ŷ direction. Fig. 3 shows the
amplitudes and phases obtained for the left and right edge-scattered waves, obtained
from the solutions of the two APSIA problems, for arrays of increasing sizes. Striking
is that the phases are very close to linear, and that the amplitudes present very little
change for APSIA problems of increasing dimensions. With the procedure described
above, when solving for 20 antennas in the finite-array direction, the solutions for



smaller arrays are implicitly generated. The intermediate results are shown in Fig. 4
(a vertical shift between solutions has been introduced for clarity).
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Figure 4: For the same array as above.
Amplitudes of the impressed voltages for
arrays of increasing sizes. Successive
lines are shifted for clarity.
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Figure 5: Exact solution for the 20-
elements array, and extrapolated solu-
tion based on computations done for
n=10.

Finally, Fig. 5 shows the solution extrapolated for 20 elements in the finite-array
direction when the APSIA problems are computed for n = 10 elements. The match
with the exact solution (solid line) is good. The largest deviation appears near element
n = 5; it is due to the fact that, at the very low frequency considered here, a slight error
on the extrapolation of the wave scattered by the right edge can have a non-negligible
effect on the estimation of the currents on the left edge of the array (see Fig. 3, left).

5 Conclusion

The simulation of finite-by-infinite arrays provides insight into the strong edge effects
characterizing broadband phased arrays. The waves scattered by the two edges can
be obtained by decomposing the array with the help of two approximate semi-infinite
array (APSIA) problems. The fact of computing the edge-scattered wave along its
direction of propagation allows a rapid convergence from the order-n APSIA solution
to the order n + 1 APSIA solution. All the solutions for arrays of intermediate sizes
are obtained as a side product. For very large arrays, this procedure can be followed
exactly, untill the difference w.r.t. the infinite-array solution is small enough, after
which the edge-scattered wave is simply extrapolated.
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