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1 Introduction

The electromagnetic problem of the radiation and scattering from large finite arrays in
grounded layered media is of interest in various applications. An integral equation tech-
nique based on the method of moments (MoM) is one suitable numerical approach for
solving this type of problem. However, when the array size becomes very large, the con-
ventional MoM can become highly inefficient or even intractable due to the computational
cost and memory storage requirements.

A number of techniques and algorithms have been developed in the literature to reduce the
computational time and also to overcome the memory storage limitations for solving large
problems. In this work, a hybrid DFT-MoM approach has been developed to reduce the
number of unknowns in the treatment of large finite arrays by using the Discrete Fourier
Transform (DFT) for representing the global array distribution. Due to the compactness of
the DFT spectrum of global array current distribution for most typical array excitations, the
number of unknowns can be reduced from O(N ×M) to O(N + M), for N ×M element
arrays; hence reducing the computational time and memory storage requirements for the
analysis of large finite arrays.

2 Formulation

A conventional EFIE-based MoM solution for solving electromagnetic problems of finite
periodic antenna arrays in a grounded layer medium can be written in the form of matrix
equation as

[Z][I] = [V ] (1)

where [Z] is the impedance matrix, [V ] is the excitation vector, and [I] is the unknown
coefficient vector for the local basis over the antenna elements. The set of the unknown
coefficients {Inm} in the vector [I] represents the global array current distribution.

In general, we may have multiple expansion modes for the local basis over each antenna
element. One can represent each set of the unknown coefficients {Inm} for each particular
expansion mode in terms of a two-dimensional (2-D) DFT expansion as

Inm =
N−1
∑

p=0

M−1
∑

q=0

Ĩpqw
n
p wm

q (2)

or in the matrix form
[I] = [B][Ĩ] (3)
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where wp = e−j2πp/N and wq = e−j2πq/M are the DFT global basis functions. [Ĩ] is the
unknown DFT coefficient vector and [B] represents the DFT transformation matrix.

For most realistic transmitting phased array antenna excitations as well as for external plane
wave excitation, the DFT spectrum of the array current distribution is highly localized as
illustrated in Figure 1. This local phenomenon of the spectral distribution can be explained
via the UTD concepts for finite arrays [1]. As a result, only the dominant spectral compo-
nents are significant and sufficient to represent the original global array current distribution.
Thus, {Inm} can be approximated by a highly compact truncated 2-D DFT expansion

Inm '
∑

p,q∈D

Ĩpqw
n
p wm

q (4)

or in the matrix form
[I] ' [Bt][Ĩt] (5)

where {p, q ∈ D} represents the indices of dominant DFT spectrum. [Ĩt] and [Bt] represent
the truncated versions of [Ĩ] and [B], respectively. Consequently, the length of [Ĩt] is much
smaller than that of [I] or [Ĩ].

By using the approximation in (5), the MoM matrix equation in (1) can be replaced by

[Z][Bt][Ĩt] = [V ] (6)

Applying the conjugate Galerkin testing with the same set of global truncated DFT basis
functions on (6), one obtains

[Bt]
†[Z][Bt][Ĩt] = [Bt]

†[V ] (7)

or
[Z̃t][Ĩt] = [Ṽt] (8)

where † denotes “conjugate transpose”. The resulting matrix equation in (8) is relatively
more compact than the original one in (1), thus substantially reducing the overall computa-
tional cost for a matrix solution.

3 Computational Improvement

In the present work, the elements of impedance matrix [Z] are efficiently computed by em-
ploying the asymptotic closed form Green’s function for a grounded multilayered medium [2]
when the source and field point separations greater than one free space wavelength; while
for smaller separations, the Green’s function is computed numerically from the usual Sommerfeld-
type integral representation. The asymptotic closed form Green’s function allows a signifi-
cantly faster computation of the impedance matrix elements than the highly inefficient and
extremely time consuming computation of the numerical Sommerfeld-type integral rep-
resentation for the field. Only the diagonal and near diagonal elements of [Z] are really
computed by the numerical integration whereas the others are computed by using the much
more efficient asymptotic closed form result mentioned above. Furthermore, due to the pe-
riodic property of the array, the computation of the impedance matrix [Z] results in only
O(N × M) of the required CPU time and memory storage for N × M element arrays.



In the present hybrid DFT-MoM approach, some small additional CPU time and memory
storage is needed in the matrix transformation and compression process; i.e., to perform the
operations [Bt]

†[Z][Bt] and [Bt]
†[V ]. The highly efficient standard Fast Fourier Transform

(FFT) algorithm is employed to perform the 2-D DFT transformation in such process so
that the operation [Bt]

†[Z][Bt] requires O(α × N × M × max{N, M}) CPU time and
O(N ×M ×max{N, M}) memory storage, where α is a constant related to the number of
prime factors of N and M . Typically, α is much less than N and M for moderate to large
N and M . Also, the operation [Bt]

†[V ] requires O(α×N ×M) CPU time and O(N ×M)
memory storage. As a result, the net computational time in this process is much less than
the time for constructing the impedance matrix and for solving the matrix equation.

The compressed matrix equation in (8) is O(N +M), which is much more compact than the
original matrix equation of O(N × M) in (1). Thus, it requires only O((N + M)2) CPU
time for solving by the iterative matrix solver, while the conventional approach requires
O((N × M)2) CPU time. Typically, N + M ¿ N × M for large to very large arrays;
hence, the hybrid DFT-MoM significantly reduces the computational time for solving the
matrix equation compared to the conventional MoM. The significant computational time re-
duction in this step completely overcomes the far less additional time required in the matrix
transformation and compression process mentioned above. Furthermore, the computational
time saving is much more significant while computing any quantities as a function of the
scan angle, e.g. the Radar Cross Section (RCS), where it is required to solve the matrix
equation for each scan angle as one steps through the whole range of scan angles.

4 Numerical Results

The numerical results in Figure 2 illustrate the accuracy and efficiency of the DFT-MoM
comparing to the conventional MoM for the analysis of large finite arrays. The simulations
are run on a N × M patch array on a single grounded dielectric layer. The grounded
layer has a dielectric constant 12.8, a thickness 0.06λ0, and is assumed to extend to infinity
while the number of array elements is finite. Each microstrip patch has a dimension of
L × W = 0.1074λ0 × 0.15λ0, and is fed at the center of one edge by microstrip feed line.

Figure 2(a) shows the radiation efficiency of 19 × 19 array for various scan angles. The
plot shows the scan blindness of a finite array which occurs in this geometry at the scan
angle around 46o. The DFT-MoM solution agrees very well with the conventional MoM
solution while the computational time saving factor is about 1:50 or better for this case. For
larger arrays, the time saving is expected to significantly more. This result also compares
extremely well with that given by [3]. Figure 2(b) shows the CPU time required by the
DFT-MoM and the conventional MoM as a function of the array size, where it is noted
that the impedance matrix [Z] is computed via the asymptotic closed form solution for off-
diagonal elements in both the DFT-MoM as well as the conventional MoM. The significant
computational time saving by the DFT-MoM can be seen from the plot.
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(a) Global array current distribution

−20
−10

0
10

20

−20
−10

0
10

20
0

0.002

0.004

0.006

0.008

0.01

lk
|I~ kl

| (
A

)

(b) DFT spectrum

Figure 1: A typical example of (a) the global array current distribution and (b) the corre-
sponding DFT spectrum, for a tapered array excitation.
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(a) The radiation efficiency of a 19×19 array
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Figure 2: The comparisons of (a) accuracy and (b) efficiency of the hybrid DFT-MoM
solution to the conventional MoM solution.




