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Abstract— In this paper, the fields in a 2D finite photonic crystal are calculated in a rigorous and
efficient way using an integral equation technique. At the surface of every cylinder an approriate
boundary impedance is used. The validity and accuracy of the method are verified by comparing
the numerical results for a small example with those obtained by the method of Auxiliary Sources.
Finally, this method is used to study a more complex PBG structure, namely a wave demultiplexer.

I. INTRODUCTION

Photonic crystals (PCs) have raised substantial interest because of their ability to control the light-
wave propagation [1]. These PCs consist of a set of parallel cylinders embedded in a homogeneous
medium or planar stratified medium. Because of the periodicity, a PC exhibits photonic band gaps in
which electromagnetic fields cannot propagate in given directions. By removing a row of cylinders,
channel waveguides, operating at frequencies within the bandgap, are created. These waveguides
are expected to provide waveguiding with low losses and to allow sharp bends. The finite-difference
time-domain (FDTD) method has been widely used to simulate the properties of these PCs. With
respect to frequency domain tecniques such as integral equations, it is often stated that they are very
time consuming. In this paper however, we present a rigorous and very efficient semi-analytical
technique to calculate the fields in a 2D finite photonic crystal. In this contribution we restrict
ourselves to a homogeneous background medium and to TE polarization.

II. BASIC FORMULATION

A. Field and current representation

At the surface of every cylinder
�

(Fig. 1) we define unknown surface currents

������	� ��
������������
 ��������� �
� �� "! ���$#&% �('*) � (1)

with ��� the radius of cylinder
�

and �	� ��������� the local cylindrical coordinates of this cylinder. These
currents are placed in an infinite homogeneous region with dielectric permittivity +",.-0/ . The total
electric field on the surface of cylinder

�
can also be written as a Fourier series
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with

# �7 
98 "!;:=<� <
12����	� ��
4����������� # � % 7$'*)5> ����? (3)

The total field
1 ��3�	� ��
4���5������� is the superposition of the following 3 contributions:

(i) the field caused by the surface current on cylinder
�
:
1 � �� 
A@ ���70��� � # � �7 # % 7$'*) ;

(ii) the field caused by the surface currents on the other cylinders:
1 % �� 
A@ ���70��� �@ %"B� � # % �7 # %

7$'*)
;
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(iii) the field caused by the source:
1�� �� 
A@ ���70��� � # � �7 # % 7$'*) .One can easily verify that the self-patch contribution is given by

# � �7 
�� � ��� �� �	��
 ��7 ��� ����� � 7 ��� ����� �3�7 ? (4)

In order to calculate the non self-patch contribution # % �7 , we express the field caused by the currents
on cylinder � in terms of the local coordinates of cylinder

�
using the addition theorem of the Hankel

functions. One finds

#&% �7 
�� ��� ��
��������� � � 
 ��7"� � ����� � % � � � ��� � % � � 7 ��� ��� � #&% 
 � � 7 �� ) � � %� � (5)

with � � % and � � % respectively the distance and the angle between the centers of both cylinders, see
Fig. 1.

B. Boundary Impedance

For the case of perfectly conducting cylinders ( #���� �����! ��
#" ), the current (1) is the physical surface
current and the whole problem can be solved by demanding that the total electric field is zero on the
surface of all cylinders. This in turn leads to a set of equations for the unknown surface currents

� ��
in (1). For dielectric cylinders, internal fields have to be taken into account. Here, we circumvent this
problem by still using the surface current (1) as our only unknown quantity, but now an appropriate
boundary impedance has to be introduced relating the total external electric field to this current. For
the calculation of this boundary impedance, we consider two situations (Fig. 2):$ the original situation with a dielectric cylinder with radius ��� and dielectric permittivity + � , placed
in a homogeneous space with relative dielectric permittivity +$,.-0/ ;$ a homogeneous space with relative dielectric permittivity +$,.-0/ , but with unknown currents� �� 
 @ ���% ��� � � �% # % % '*) placed on the now fictitious surface & � of the cylinder

�
.

In the first situation the fields inside the dielectric cylinder are given by1('���	� �*) ���5������� 
 ����
% ��� � + % � % ��� �-, + � � ��� #&% % '*) � (6)

� ��� � � ''*) �	� �*) ���5������� 
 � �-, + � ����
% ��� � + % �/.%���� �0, + � � ��� #&% % '*) � (7)

where
+ % are unknown coefficients. In the second situation the fields at � ��
4� �� are given by1('1'� � � �� ������� 
 ����

% ��� � 2 % � % ��� �-, + ,.-0/ ����� #&% % '*) � (8)

� ��� � � '1''*)�� � �� ������� 
 � �0, + ,.-0/ ����
% ��� � 2 % �/.% ��� �0, + � ����� #&% % '*)/3 � ��� �

���� � �
� �% "! ���0#&% % '*) ? (9)

We define the boundary admittance 4 �% 
657 )8 as� �% "! ��� 
 4 �% # '1'%;� ������
 4 �% 2 % � % ��� �-, + ,.-0/ ����� ? (10)

This boundary admittance can be determined by demanding that
1 '� � � �� ������� 
 1 '1'� � � �� ������� and

that � ''*) � � �� ��������
9� '1''*) � � �� ������� :
: �% 
 � ; � �+ �

� % ��� � , + ,.-0/ ��� � � % ��� � , + � �����, + ,.-0/ � % � 5 ��� � , + ,.-0/ ��� � � % ��� � , + � �����<�=, + � � % � 5 ��� � , + � ����� � % ��� � , + ,.-0/ ����� ? (11)

A perfectly conducting cylinder corresponds with + �(
>" , or
: �% 
@? as expected. The unknown

surface currents are then determined by

12��3� ������������
 : �% �3�% or
1 /�A5/� � �����������B� ����

% ��� � : �% �3�% #&% % '*) 
9? ? (12)
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In practice, this infinite sum has to be truncated to a finite number of terms:
 

going from ��� � to3 � � . The main advantage of our approach is that the only unknowns of the complete problem are
now the surface currents

� �% . The fields inside the cylinders have been eliminated on beforehand.

C. Comparison with the method of Auxiliary Sources

In the method of Auxiliary Sources [2], one introduces two sets of ��� auxiliary sources for every
cylinder. The first set is radiating in a homogeneous medium with permittivity +",.-0/ and is located
on an auxiliary surface

�& � located inside the surface & � . With this set one calculates the scattered
field outside the surface & � . The second set is radiating inside an infinite space filled by the material
of the dielectric cylinder

�
and is located at an auxiliary surface

�& � outside the surface & � . This set
describes the total field inside the cylinder

�
. The boundary conditions are imposed at a discrete

set of � 7 points on the surface & � in order to determine the unknown currents. Fig. 3 shows the
total electric field calculated with both methods for the geometry shown at the left of the figure. It
consists of 5 cylinders placed in vacuum on a circle with radius ? ? � � with a line source placed at its
centre. The radii of the 5 cylinders are respectively 8 ? � � , 8 ? � � ,

 � , 8 ? 	"� and
 ? � � . They all have a

relative dielectric constant of 8. The amplitude of the electric field is shown along the dashed circle
with a radius of ? ? � � for a frequency of ? ? � �
 . As can be seen, the required number of unknowns in
our method (5 x 5 = 25) is much less then that in the method of AS (5 x 80 = 400) in order to reach
the same accuracy.

III. EXAMPLE: DEMULTIPLEXER

A wave demultiplexer is a very important device for improving the capacity of optical communi-
cations. A photonic crystal can also be applied to construct such a device. In [3] a kind of wave
demultiplexer realized through direct resonant tunneling between waveguides and points defects,
was proposed. The schematic of a wave demultiplexer with two channels is shown in Fig. 4. At
the end of the inlet waveguide, the waveguide bifurcates into two waveguides that are linked with
a resonant cavity, each formed by five cylinders. These resonant cavities are different from each
other. In this way, one obtains two different frequencies in the two outlets of the demultiplexer.
The parameters of the device are as follows. The radius of the cylinders is ? ? 8 �  � , with � the lat-
tice constant. The dielectric cylinders have a relative dielectric constant of � ? ? and are placed in a
homogeneous medium with a relative permittivity of 8 ? ?�� . In Fig. 4 two special cylinders  8 and
  are placed in the resonant cavities. Their radius is ? ? ����� � and their relative permittivities are
respectively � ? � and

� ? � . In the simulations, a current line source is placed in the inlet waveguide.
In total there are 509 dielectric cylinders in this example. For the first outlet the output frequency is� 
�? ? � ?�� �
 and for the second outlet this is

� 
�? ? � � � �
 , which corresponds well with the results
given in [3]. The electric field at the outlet of the demultiplexer is shown at the right of Fig. 4 for
these two frequencies and for the intermediate frequency

� 
 ? ? �  � �
 , at which there is almost no
signal at the outlet of the demultiplexer. With � � 
  

, or 509 x 5 = 2545 unknowns, the calculation
time for one frequency was about 3 minutes. Increasing the number of unknowns � � causes only
very minor changes, indicating that the method has converged.
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Fig. 1. Basic geometry and coordinate systems
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Fig. 2. Two situations for the calculation of the boundary impedance
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Fig. 3. Comparison of the Boundary Impedance (BI) method with the method of Auxiliary Sources (AS)
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Fig. 4. Example: demultiplexer




