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Abstract: Using the finite-difference time-domain(FD-TD) method in the 
Cartesian coordinate system, the coupling effects in some (a)symmetrical edge-
coupled V-shape and trapezoidal microshield transmission lines (MTLs) are 
studied. The hybrid effects of different geometrical parameters of the MTLs and 
the permittivity of the filling materials on the coupling coefficient are examined 
and compared. It is shown that the edge-coupled V-shape geometry is effective 
in  reducing coupling over a wide frequency range.    
 
I. INTRODUCTION 
Recently, several unconventional microstrip lines have been proposed using 
novel fabrication technology. These microstrip lines can be used in wideband 
high-frequency circuits. For example, the finite-ground V-shape Si-
micromachined lines developed by Katehi et al, by selective etching of silicon 
substrate in CMOS technology, can achieve zero dispersion in the frequency 
range of 10 to 60GHz. In particular, the loss in the V-shape geometry can be 
reduced considerably to 0.115dB/mm [1, 2].   
    To analyse the wideband dispersion characteristics of most microstrip 
structures, several numerical methods, such as finite-difference time-domain 
(FD-TD) method [3] can be employed to calculate the effective permittivity, 
attenuation constant, characteristic impedance as well as the mode coupling 
coefficient. In using the FD-TD method, the numerical error in treating curved 
inclined boundaries can be reduced using polygonal approximation.          
     In this work, the wideband coupling characteristics of some novel 
(a)symmetrical edge-coupled MTLs are studied using the FD-TD method in 
Cartesian coordinate system. The geometry of these MTLs include the edge-
coupled V-shape and the trapezoidal structures. The filling isotropic non-
magnetic material is usually low loss, and can be described by different 
permittivities. In particular, the low temperature co-fired ceramics (LTCCs) are 
included. In our study, the coupling effects are examined and compared in 
detail.  
 
II. GEOMETRIES  
     The cross-sectional views of two (a)symmetrical edge-coupled MTLs are 
shown in Figs. 1(a, b), where the structures are uniform in the z-axis direction, 
respectively. In Figs. 1(a, b), the metallic ground surface is perfectly 
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conducting, and it serves to isolate the waveguide from its neighbouring 
circuits. Hence, the coupling, crosstalk, and parasitic substrate modes are 
reduced or eliminated.  In Fig. 1(a, b), the metal strips with widths 2,1W  are also 
perfectly conducting.  
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                (a) V-shape                                                 (b) trapezodial  
 
         Fig. 1. Cross-sectional view of two microshield transmission lines. 
 
  
III. NUMERICAL RESULTS AND DISCUSSIONS 
      The FD-TD method is employed and its methodology will be included in 
detail here [3]. The inclined shielding ground sections in Figs. 1(a, b) is 
modelled using the polygonal approximation in our computation. On the other 
hand, the perfectly matched layer (PML) is employed to terminate the 
computational domain. To verify our FD-TD code, the characteristic impedance 
Z of a single V-shape MTL is first computed, as shown in Fig. 2, where all 
parameters are chosen to be the same as those given in [4], and o601 =α .    
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Fig. 2. Characteristic impedance as a function of frequency of the V-shape MTL 
for different values of  W/D. 
 
     In Fig. 2, the dimensions of the FD-TD cells are chosen as follows: 

mmy 0545.0=∆ , mmz 0324.0=∆  and 0315.0=∆x mm. The time step is set to 
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=∆t 0.0525ps, and the excitation is a standard Gaussian pulse with a width of 
2ps and a time delay 0t = 8ps. The characteristic impedance Z is computed by 
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where  
                        )]([)( tVFFTV kk =ω , )]([)( tIFFTI kk =ω                            (1b,c)              
and FFT  stands for fast Fourier transform. It is obvious that an excellent 
agreement is obtained by comparing our result with that shown in [4], and the 
value of Z increases as W/D decreases. 
      Fig. 3 shows the coupling coefficient between the symmetrical edge-coupled 
V-shape MTLs as a function of DW / . Here, we choose WWW == 21 , 

:180(6021
oo==αα  edge-coupled microstrip line), and  55.221 == rr εε . 

Under such circumstances, the structure becomes symmetrical.    
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Fig. 3. Coupling coefficie
V-shape MTLs at 80 GHz
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WWW == 21 , and 55.2=rε ). In Fig. 5, the coupling coefficient increases 
monotonously with frequency. On the other hand, the coupling decreases with 
S, it is much higher than that of the V-shape geometry. 
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Fig. 4. Coupling coefficient versus frequency for an asymmetrical edge-coupled    
V-shape MTLs.    
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Fig. 5.Coupling coefficient versus frequency for an edge-coupled trapezodial 
MTLs for different WS / =1.0, 1.4, 1.8, 2.2, 2.6 and 3.0, respectively. 
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