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1.Introduction 

Method of moments (MoM) solvers are useful for simulating coupled circuit-
electromagnetic problems [1] involving integrated circuit packages and systems-on-chip, 
wherein frequency-dependent skin effects can be modeled, and arbitrarily-shaped 
structures such as on-chip inductors can be analyzed with surface-only formulations. For 
broadband analog and digital applications, spectral current and field components can 
arise at sufficiently low frequencies where surface impedance approximations [2] for 
approximating skin effects are not valid. For seamless surface-based broadband 
simulation, it is important to explicitly model the interior of conducting materials in order 
to avoid ad-hoc mixing of surface and volume based formulations. This paper focuses on 
broadband computation of lossy medium scalar, vector, and gradient Green’s function 
integrals for arbitrarily located sources and observers. 

Existing methods for computing Green’s function integrals address subsets of the 
above problem; for instance, singularity extraction [3] in conjunction with 2D Gaussian 
quadrature [4] can be used for computation of Green’s function integrals in lossy media 
at very low frequencies where exponential spatial decays are weak. Methods suitable for 
computing Green’s function integrals at high frequencies are discussed previously in [5] 
for lossless media and in [6] for lossy media, for the restricted case of the scalar Green’s 
function. A similar approach is proposed in [7] to evaluate the scalar and the vector cases 
for self-term integration, with extensions possible in-plane observation. However, the 
crucial case of near-singular observation points outside the plane, as in the modeling of 
very thin conductors cannot be handled by the approach in [7]. The computation of 
gradient Green’s function integrals has not been addressed by the methods [5-7]. 

In this work we propose a polar-coordinate transformation and new mixed 
analytic and numerical quadrature for accurate evaluation of RWG function [8] based 
scalar, vector, and gradient Green’s function integrals in lossy conducting media in a 
form more general than other existing methods. The presented technique is broadband 
and applicable to any distribution of source and testing function locations and 
orientations and to any lossy material. 

 
2. Formulation and Resultant Integrals 

The magnetic and electric potentials due to an RWG basis function in a lossy 
medium can be described as linear combinations of four two-dimensional integrals vectM  
[7], scalM  [5-6], vectN and scalN  [9] given as  
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where T denotes a source triangle, ρ  is the vector from the projection O of the 
observation point r  on the plane of T to a source point r ′ in T, and rr ′−=R  is the 
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radial distance between the source and the observation point. R can be written as 
22 dR += ρ , where d denotes the distance of the observation point r from the plane of 

T.  The complex wave-number in the interior of the conductor is denoted by k.  Equation 
(2.1a) can be expressed in polar coordinates as  
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where local two-dimensional x-y coordinates have been used in the plane of T and θ  is 
the polar angle of a source point r ′ relative to the local coordinate system with origin at 
O. The limits on ρ are given by its extremals for which a circle with radius ρ centered at 
O intersects T. The limits on θ  for a given ρ are obtained by finding the intersection 
points of T with the circle of radius ρ . In general, the four integrals in Eqns. (2.1a,b) can 
be recast into polar coordinates to obtain separable integrals of the form  
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The integral in Eqn. (2.3) is separable in its variables ρ and θ , and the integral in θ  has 
a simple closed form expression. Thus the overall integral can finally be expressed as a 

1D integral in ρ as, ( ) ρρ
ρ

ρ
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It is important to note the change in order of integration compared to that in [5-
7], where the (analytic) integration is done first on ρ . While [5-6] consider only the 
scalar integral, in [7] the on-plane observer locations ( 0=d ) lead to functions of ρ for 
the vector integral that are easily integrable, which is not the case for general observation 
points ( 0≠d ). To obviate this problem, particularly for the crucial case of near singular 
off-plane observation points, the change in order of integration is performed in our work. 
In the proposed method, )(θg is always a simple sinusoidal function or a constant, due to 
the fact that the Green’s functions are not dependent on the polar angle θ . Therefore the 
θ  integral can be computed analytically in all cases (arbitrary locations, materials, 
frequencies, and scalar, vector, and gradient integrals), leading to a final 1D numerical 
integration in ρ , of the integrand )(ρu , which is a continuous and piece-wise smooth 
function in the interval ( )maxmin , ρρ . Boundaries of the subintervals of ρ over which 

)(ρu  is smooth, are the radii values for which the circle touches the vertices of T or its 
edges tangentially.  An adaptive 1D integration rule has been developed for the functions 
above using an approach similar to Matlab’s quad8.  
 
3. Numerical Results 

A relative accuracy comparison between the proposed scheme and fixed-point 
two-dimensional Gaussian quadrature with singularity extraction is demonstrated in Fig. 
1 for the interior of a Copper conductor. At low frequencies, the Green’s functions in 
lossy media exhibit slow decay over distance and hence a 7-point Gaussian quadrature 
scheme [4] functions adequately. As the frequency is increased, the details of the sharp 
exponential decay in the Green’s functions are not captured by the low-order Gaussian 
rule. The presented formulation explicitly models the exponential decays and is thus not 
affected by the added detail. To confirm that the 7-point Gaussian rule has broken down 
for this case, a higher-order 25-point Gaussian quadrature scheme is also used. This 



method shows better accuracy than the lower order rule in the range of 100-1000 Hz. 
However, as is evident, as the frequency is increased further, the 25-point rule also 
becomes inaccurate.  In general, any fixed-order two-dimensional rule will become 
inaccurate after a certain frequency. While this has not been explicitly verified in this 
paper, it is expected that a well-designed 1D adaptive quadrature scheme should 
outperform an adaptive two-dimensional quadrature rule for the reasons that the 
exponential decay is explicitly extracted in the 1D form, making amenable the use of a 
specialized quadrature rule (e.g. Gauss-Laguerre [4]), and that the explicit independence 
of the Green’s function on the polar angle is exploited in the 1D form.  

Figure 2 demonstrates the ability of the proposed method in conjunction with a 
coupled two-region circuit-EM MoM formulation [1] to compute the frequency-
dependent resistance of a cylinder, with radius 0.5 mm. and length 5 mm, including the 
low-frequency leveling off behavior to the DC value of 0.109 Ω, using a two-region 
PMCHW formulation [10]. Also shown is the solution from the surface impedance 
approximation, which becomes inaccurate at low frequencies (Fig.2, left) but provides the 
correct answer at higher frequencies (Fig.2, right). A fixed-point two-dimensional 
Gaussian rule gives correct answers at very low frequencies (Fig.2, left) but is inaccurate 
above a certain frequency (Fig.2, right). 
 
4. Conclusions  

In this paper, a new approach to evaluate the Green’s function operators for 
RWG functions in conducting media is presented. The method works for arbitrarily 
located sources and observers for any frequency. This technique has been incorporated 
into a broadband two-region surface formulation for accurate computation of frequency-
dependent parameters, and shows the potential to obviate the need to switch to volumetric 
formulations at low frequencies where skin effect is not well developed.  
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Figure 1: Comparison between 2D Gaussian rules with singularity extraction and proposed
method for evaluation of the integrals vectM and vectN  in Eqns. (2.1a,b) for a non-self-term
integral, for a triangle with vertices ( 0,, αα − ),( 0,2/,αα ),( 0,2/,2 αα− ), and observation point
located at ),0,0( α ,where 1=α mm , with 7108.5 ×=σ S/m.  
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Figure 2: Extracted resistance of a cylinder of radius 0.5mm and length 5 mm with
4108.5 ×=σ S/m using a two region PMCHW formulation with the standard 7-point 2D

Gaussian quadrature method and the method proposed in this paper, and an impedance boundary
condition formulation, for a low frequency band (left) and higher frequencies (right). 
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