ARRAY FAR FIELD SYNTHESIS WITH NEAR FIELD CONTROL

Roberto Vescovo
Dipartimento di Elettrotecnica Elettronica ed Informatica - Università di Trieste
Via A. Valerio, 10 - 34127 Trieste - ITALY
E-mail: vescovo@univ.trieste.it

In some antenna problems it is important to reduce the field produced by an antenna array in an assigned region V in the near-field zone, to the aim of reducing the electromagnetic coupling with the environment. However, the problem is to obtain such a reduction without an excessive distortion of the far field pattern.
Given an antenna array, let $\mathbf{I}=\left[I_{1}, I_{2}, \ldots, I_{N}\right]$ be the generic excitation vector, $F(\mathbf{I}, \theta)$ the corresponding far-field pattern in the direction θ and $\mathbf{E}(\mathbf{I}, \mathbf{r})$ the electric field produced at the point \mathbf{r}. We assume that a mask M for the far-field pattern is assigned (by M we mean the set of all functions $G(\theta)$ such that $M_{1}(\theta) \leq|G(\theta)| \leq M_{2}(\theta)$, where $M_{1}(\theta)$ and $M_{2}(\theta)$ are two non-negative functions). We want to solve the following problem: determine an excitation vector \mathbf{I} such that : (a) $F(\mathbf{I}, \theta) \in M$; (b) $|\mathbf{E}(\mathbf{I}, \mathbf{r})| \leq E_{\text {max }}$ for $\mathbf{r} \in V$, where $E_{\max }$ is a given threshold and V is the assigned region.
Denoting by K the set of all vector functions $\mathbf{S}(\mathbf{r})$ satisfying condition (b), and by A the Cartesian product $M \times K$, the problem can be formulated as follows: determine a pair $(F(\mathbf{I}, \theta), \mathbf{E}(\mathbf{I}, \mathbf{r}))$ belonging to the set A (assuming that $A=M \times K$ is nonempty). Denoting by B the set of all pairs ($F(\mathbf{I}, \theta), \mathbf{E}(\mathbf{I}, \mathbf{r}))$, where \mathbf{I} is the generic excitation vector, a solution to the problem is any pair $(F(\theta), \mathbf{E}(\mathbf{r})) \in A \cap B$. This suggests the possibility of solving the problem by the method of alternate projections (O.M. Bucci, G. D'Elia, G. Mazzarella, and G. Panariello," Antenna Pattern Synthesis: A New General Approach," Proceedings of the IEEE, Vol. 82, No. 3, Mar 1994, pp. 358-371). To this aim, we introduce the following norm $\|(G, \mathbf{S})\|$ of the generic pair $(G(\theta), \mathbf{S}(\mathbf{r}))$:

$$
\|(G, \mathbf{S})\|^{2}=\|G\|_{1}^{2}+T\|\mathbf{S}\|_{2}^{2}
$$

where $\|G\|_{1}^{2}=\int_{I}|G(\theta)|^{2} d \theta$, with I the interval containing the space directions θ, $\|\mathbf{S}\|_{2}^{2}=\int_{V}|\mathbf{S}(\mathbf{r})|^{2} d V$ and T is an assigned real positive number. This allows introducing a distance between two pairs, so that the following two projectors can be defined: P_{A}, that associates with any pair (F, \mathbf{E}) a pair $\left(F_{A}, \mathbf{E}_{A}\right) \in A$ closest to $(F, \mathbf{E}) ; P_{B}$, that associates with (F, \mathbf{E}) the pair $\left(F_{B}, \mathbf{E}_{B}\right) \in B$ closest to (F, \mathbf{E}). If $(F, \mathbf{E})_{0}$ is a starting point, then we follow the iteration scheme $(F, \mathbf{E})_{n}=P_{B} P_{A}(F, \mathbf{E})_{n-1}(n=1,2, \ldots)$. The elements $(F, \mathbf{E})_{n}$ belong to B (that is, F is an array pattern corresponding to an excitation vector \mathbf{I} and \mathbf{E} is the field produced by \mathbf{I}), and have progressively decreasing distances from A. An element $(F, \mathbf{E})_{n}$ sufficiently close to A is considered as a solution to the problem. In order to find a simple implementation of the projector P_{A}, we replace the above condition (b) by the stronger conditions: $\left|E_{x}(\mathbf{r})\right| \leq E_{\max }^{x},\left|E_{y}(\mathbf{r})\right| \leq E_{\max }^{y},\left|E_{z}(\mathbf{r})\right| \leq E_{\max }^{z}$, where $E_{\text {max }}^{x}, E_{\text {max }}^{y}$ and $E_{\text {max }}^{z}$ are such that: $\left(E_{\text {max }}^{x}\right)^{2}+\left(E_{\text {max }}^{y}\right)^{2}+\left(E_{\text {max }}^{z}\right)^{2}=\left(E_{\text {max }}\right)^{2}$. Several tests showed the effectiveness of this method.

