ARRAY FAR FIELD SYNTHESIS WITH NEAR FIELD CONTROL

Roberto Vescovo

Dipartimento di Elettrotecnica Elettronica ed Informatica - Università di Trieste Via A. Valerio, 10 - 34127 Trieste – ITALY E-mail: vescovo@univ.trieste.it

In some antenna problems it is important to reduce the field produced by an antenna array in an assigned region V in the near-field zone, to the aim of reducing the electromagnetic coupling with the environment. However, the problem is to obtain such a reduction without an excessive distortion of the far field pattern.

Given an antenna array, let $\mathbf{I}=[I_1, I_2, ..., I_N]$ be the generic excitation vector, $F(\mathbf{I}, \theta)$ the corresponding far-field pattern in the direction θ and $\mathbf{E}(\mathbf{I},\mathbf{r})$ the electric field produced at the point \mathbf{r} . We assume that a mask M for the far-field pattern is assigned (by *M* we mean the set of all functions $G(\theta)$ such that $M_1(\theta) \le |G(\theta)| \le M_2(\theta)$, where $M_1(\theta)$ and $M_2(\theta)$ are two non-negative functions). We want to solve the following problem: determine an excitation vector **I** such that : (a) $F(\mathbf{I}, \theta) \in M$; (b) $|\mathbf{E}(\mathbf{I},\mathbf{r})| \le E_{max}$ for $\mathbf{r} \in V$, where E_{max} is a given threshold and V is the assigned region.

Denoting by K the set of all vector functions $\mathbf{S}(\mathbf{r})$ satisfying condition (b), and by A the Cartesian product $M \times K$, the problem can be formulated as follows: determine a pair ($F(\mathbf{I}, \theta), \mathbf{E}(\mathbf{I}, \mathbf{r})$) belonging to the set A (assuming that $A = M \times K$ is nonempty). Denoting by B the set of all pairs $(F(\mathbf{I}, \theta), \mathbf{E}(\mathbf{I}, \mathbf{r}))$, where **I** is the generic excitation vector, a solution to the problem is any pair $(F(\theta), \mathbf{E}(\mathbf{r})) \in A \cap B$. This suggests the possibility of solving the problem by the method of alternate projections (O.M. Bucci, G. D'Elia, G. Mazzarella, and G. Panariello, "Antenna Pattern Synthesis: A New General Approach," Proceedings of the IEEE, Vol. 82, No. 3, Mar 1994, pp. 358-371). To this aim, we introduce the following norm (G,S) of the generic pair ($G(\theta)$, $S(\mathbf{r})$):

$$\|(G,\mathbf{S})\|^2 = \|G\|_1^2 + T\|\mathbf{S}\|_2^2$$

where $||G||_1^2 = \int_I |G(\theta)|^2 d\theta$, with *I* the interval containing the space directions θ , $||\mathbf{S}||_2^2 = \int_V |\mathbf{S}(\mathbf{r})|^2 dV$ and *T* is an assigned real positive number. This allows introducing a

distance between two pairs, so that the following two projectors can be defined: P_A , that associates with any pair (F, \mathbf{E}) a pair $(F_A, \mathbf{E}_A) \in A$ closest to (F, \mathbf{E}) ; P_B , that associates with (F, \mathbf{E}) the pair $(F_B, \mathbf{E}_B) \in B$ closest to (F, \mathbf{E}) . If $(F, \mathbf{E})_0$ is a starting point, then we follow the iteration scheme $(F, \mathbf{E})_n = P_B P_A (F, \mathbf{E})_{n-1}$ (n=1,2,...). The elements $(F,\mathbf{E})_n$ belong to B (that is, F is an array pattern corresponding to an excitation vector I and E is the field produced by I), and have progressively decreasing distances from A. An element $(F, \mathbf{E})_n$ sufficiently close to A is considered as a solution to the problem. In order to find a simple implementation of the projector P_A , we replace the above condition (b) by the stronger conditions: $|E_x(\mathbf{r})| \le E_{max}^x$, $|E_y(\mathbf{r})| \le E_{max}^y$, $|E_z(\mathbf{r})| \le E_{max}^z$, where E_{max}^{x} , E_{max}^{y} and E_{max}^{z} are such that: $(E_{max}^{x})^{2} + (E_{max}^{y})^{2} + (E_{max}^{z})^{2} = (E_{max})^{2}$. Several tests showed the effectiveness of this method.